3D检测与分割
Guoguang Du
维护公众号【3D视觉前沿】
https://georgedu.github.io/
展开
-
2020-ImVoteNet: Boosting 3D Object Detection in Point Clouds with Image Votes-结合图像投票提升点云3D检测
1. 摘要这篇文章的第一作者是Charles R. Qi,同时也是PointNet,PointNet++,Frustum PointNets和VoteNet的一作,代码目前没有开源。之前进行室内3D检测的SOTA算法VoteNet只使用了point cloud,而point cloud具有以下劣势,点云稀疏,缺少颜色信息,而且数据包含传感器噪声。相对而言,images具有更高的分辨率以及丰富的...原创 2020-02-06 11:52:54 · 3409 阅读 · 0 评论 -
基于深度学习的3D目标检测综述-Deep Learning-Based 3D Detection: A Review
引言传统的2D目标检测,是得到目标物体的类别,以及图像平面内的包围盒,因此包含的参数为类别c,包围盒的中心(x,y),长宽(length, width)。而3D检测的任务是得到目标物体的类别(Classification)以及带朝向的3D包围盒(Oriented 3D Bounding Boxes),因此,其包含类别c,位置(x, y, z),size(length, widith, heig...原创 2019-08-22 11:13:49 · 6273 阅读 · 18 评论 -
机器人抓取中物体定位算法概述
1. 引言机器人抓取的首要任务,是确定要抓什么,也就是需要定位目标物体在输入数据中的位置。这个过程可以分为三个层次,分别为物体定位但不识别、物体检测、物体实例分割。物体定位但不识别是指获得目标物体的2D/3D范围但是不知道物体的类别;目标检测是指得到目标物体的2D/3D包围盒,同时识别目标物体的类别;目标实例分割提供目标物体所占有的像素或者点级别的区域信息,同时识别目标物体的类别。本文来自论文h...原创 2020-05-05 19:10:29 · 10505 阅读 · 7 评论