AHP电气经济指数计算

搞得一个电气经济指数的一个计算,也是AHP的一个应用吧,能够使用,数据的话可能要自己搞了,做个备注吧

import pandas as pd
import numpy as np
import math
import warnings

# 成对比矩阵
criteria = np.array([[1,3,5],
                      [1/3,1,3],
                      [1/5, 1/3., 1]])
# AHP框架,获得权重
RI = (0, 0, 0.58, 0.9, 1.12, 1.24, 1.32, 1.41, 1.45, 1.49)
def cal_weights(input_matrix):
    input_matrix = np.array(input_matrix)
    n, n1 = input_matrix.shape
    assert n == n1, '不是一个方阵'
    for i in range(n):
        for j in range(n):
            if np.abs(input_matrix[i, j] * input_matrix[j, i] - 1) > 1e-7:
                raise ValueError('不是反互对称矩阵')

    eigenvalues, eigenvectors = np.linalg.eig(input_matrix)

    max_idx = np.argmax(eigenvalues)
    max_eigen = eigenvalues[max_idx].real
    eigen = eigenvectors[:, max_idx].real
    eigen = eigen / eigen.sum()

    if n > 9:
        CR = None
        warnings.warn('无法判断一致性')
    else:
        CI = (max_eigen - n) / (n - 1)
        CR = CI / RI[n]
    return max_eigen, CR, eigen
max_eigen, CR, criteria_eigen = cal_weights(criteria)


# sigmoid函数,调整极值
def trans_index(x):
    index = 1/(1+math.exp(-x*5))
    return index


# 指数计算框架
def get_heat_index(data):
    data = data.sort_values('data_dt').reset_index(drop = True)
    data['elecqt_ratio'] = (data['elecqt_t']-data['elecqt_t'].shift(12))/data['elecqt_t'].shift(12)
    data['elecqt_index'] = data['elecqt_ratio'].apply(lambda x:trans_index(x))

    data['cons_d'] = data['cons_t']-data['cons_t'].shift(1)
    data['cons_ratio'] = (data['cons_d']/data['cons_t'].shift(1)+(data['cons_t']-data['cons_t'].shift(12))/data['cons_t'].shift(12))/2
    data['cons_index'] = data['cons_ratio'].apply(lambda x:trans_index(x))

    data['cap_n_ratio'] =data['cap_n']/data['cap_t']
    data['cap_n_index'] =data['cap_n_ratio'].apply(lambda x:trans_index(x))

    data['cap_c_ratio'] =data['cap_c']/data['cap_t']
    data['cap_c_index'] =data['cap_c_ratio'].apply(lambda x:trans_index(x))

    data['cap_index'] = data['cap_n_index'] - data['cap_c_index']

    data['heat_index'] = data['elecqt_index']*criteria_eigen[0] + data['cons_index']*criteria_eigen[1] + data['cap_index']*criteria_eigen[2]
#     data['heat_index'] = data['heat_index']*elecqt_lv(data['elecqt_t'].mean())
    data['heat_index'] = data['heat_index'].fillna(0)
    result = data.copy()
    return result


data = pd.read_excel('basic_data.xlsx')
result = get_heat_index(data)
result_final = result[['indust_nm','indust_no','data_dt','heat_index']][12:]
result_final.to_excel('电力景气指数.xlsx')

<think>嗯,用户想了解Excel中的VLOOKUP函数的用法和参数含义。首先,我需要回忆一下VLOOKUP的基本结构。VLOOKUP是垂直查找函数,用于在表格的首列查找指定的值,然后返回该行中指定列的数据。它的四个参数分别是查找值、表格范围、列索引号和匹配模式。 接下来,我得确认每个参数的具体作用。第一个参数是lookup_value,也就是用户要查找的值,比如产品ID或者姓名。第二个参数是table_array,即查找的范围,这里要注意的是,查找值必须位于这个范围的第一列,否则函数无法正确工作。第三个参数是col_index_num,也就是用户想要返回的数据在表格范围中的第几列,这个列数是从表格范围的第一列开始算起的,不是整个工作表的列。第四个参数是range_lookup,决定是精确匹配还是近似匹配,通常用FALSE或0来指定精确匹配,避免错误。 然后,用户可能需要一个具体的例子来理解如何使用。比如,假设有一个产品价格表,用户想根据产品ID查找对应的价格。这时候,VLOOKUP就可以在ID列查找,然后返回价格列的数据。同时,要提醒用户注意表格范围最好使用绝对引用,比如$A$2:$C$100,这样在拖动公式时范围不会变化。 可能遇到的问题也需要考虑。比如,如果查找值不在表格的第一列,或者列索引号超过了表格的列数,函数会返回错误。此外,数据格式不一致也可能导致问题,比如查找值是数字,而表格中是文本格式的数字,这时候需要统一格式。还有,当出现#N/A错误时,可能是查找值不存在,或者匹配模式设置不正确,需要检查参数是否正确。 用户可能还会问到如何避免常见的错误,比如部分数据匹配出错的情况。这时候需要检查是否有多余的空格,或者数据格式不一致,或者表格范围没有锁定导致拖动时偏移。此外,XLOOKUP作为VLOOKUP的升级版,可能在某些情况下更方便,比如可以向左查找或者返回多列数据,这也是可以提及的内容。 最后,整理步骤,从基础语法到参数说明,再到具体案例,逐步引导用户理解如何使用VLOOKUP函数。同时,提供常见错误和解决方法,帮助用户在实际应用中避免问题。如果有必要,还可以比较VLOOKUP和其他查找函数的区别,比如HLOOKUP或XLOOKUP,但根据用户的问题,主要集中在VLOOKUP本身即可。</think>### Excel VLOOKUP函数详解 #### 一、基础语法与参数说明 VLOOKUP函数的语法为: $$=VLOOKUP(lookup\_value, table\_array, col\_index\_num, [range\_lookup])$$ 包含4个参数: 1. **lookup_value**(必填):要查找的值(如单元格引用或具体值) 2. **table_array**(必填):包含数据的表格范围(必须包含查找列和返回列) 3. **col_index_num**(必填):返回值所在列的序号(从table_array第一列开始计数) 4. **range_lookup**(可选):匹配类型 - `TRUE`/`1`:近似匹配(默认值,需数据升序排列) - `FALSE`/`0`:精确匹配(常用选项) [^1][^2] #### 二、使用步骤演示(工资表查询案例) 假设需要根据员工编号查询工资: 1. 建立查询单元格(如`B12`) 2. 输入公式: ```excel =VLOOKUP(A12, $A$2:$D$100, 4, 0) ``` - `A12`:待查询的员工编号 - `$A$2:$D$100`:锁定数据区域(绝对引用) - `4`:返回第4列(工资列) - `0`:精确匹配 [^2][^3] #### 三、常见错误与解决方法 | 错误现象 | 原因 | 解决方案 | |---------|------|---------| | #N/A | 查找值不存在 | 检查数据源或改用`IFERROR`容错 | | #REF! | 列序号超出范围 | 确认col_index_num ≤ 表格列数 | | 部分匹配失败 | 数据格式不一致 | 统一数值/文本格式 | | 结果错位 | 表格未锁定 | 使用`$`符号固定区域引用 | [^3][^4] #### 四、进阶技巧 1. **多条件查询**: 使用辅助列合并多个条件字段 ```excel =VLOOKUP(A2&B2, $D$2:$F$100, 3, 0) ``` 2. **通配符匹配**: `"*"`匹配任意字符,`"?"`匹配单个字符 ```excel =VLOOKUP("张*", $A$2:$C$100, 3, 0) ``` 3. **跨表查询**: 引用其他工作表数据 ```excel =VLOOKUP(A2, Sheet2!$A$2:$D$100, 4, 0) ``` [^1][^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值