算法复杂度分为时间复杂度和空间复杂度。 时间复杂度是指执行算法所需要的计算工作量;而空间复杂度是指执行这个算法所需要的内存空间。
时间复杂度:指的是执行一个算法,和问题规模之间的关函数系。用O(n)表示。
空间复杂度:执行一个算法,需要额外的辅助空间和问题规模之间的函数关系。用O(n)表示。
一、 时间复杂度问题
根据定义,求解算法的时间复杂度的具体步骤是:
⑴找出算法中的基本语句;
一般算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。
⑵ 只保留最高阶项;
计算基本语句执行次数的数量级,这就意味着只要保留最高阶项即可。
(3)不要系数;
可以忽略所有低次幂和最高次幂的系数。因为当n增长速度极快时,系数的影响是微乎其微的,可以忽略不计。
(4) 用大Ο记号表示算法的时间性能;
当n趋近于无穷大时,如果lim(T(n)/f(n))的值为不等于0的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n))。
简单的说,就是保留求出次数的最高次幂,并且把系数去掉。举例如下:
例1:
例2:
{++x ; s=0; }
//f(n)=2*1(两个表达式,各执行一次)=2,即O(f(n))=O(1)(常数项语句时间复杂度为O(1))
例3:
for(int i = 1;i<n;i+=3) // 时间复杂度:O(n)
//此表达式i每次加3,相当于f(n) = 1/3*O(n),忽略系数后时间复杂度为:O(n)
for(int i = 1;i<n;i+=2) // 时间复杂度:O(n)
//此表达式i每次加3,相当于f(n) = 1/2*O(n),忽略系数后时间复杂度为:O(n)
for(int i = 1;i<n;i*=2) // 时间复杂度:O(log2(n))
// i每次值为1、2、4、8、16、32......n所以求的是x,同时2^x=n,所以x=log2(n)。
例4:
for(int i = 1;i<=n;i+=3) //(1)
{
for(int j = 1;j<=i-1;j++) //(2)
{
c[i][j]=0; //(3)
}
}
/*再求此代码块时间复杂度时,我们直接求算法中执行次数最多的那条语句,即
语句(3)的执行次数。又因为语句(2)执行一次,语句(3)执行一次。当i分别为1
到n时,语句(2)、(3)的执行次数分别如下:
i 1 2 3 4 ......n
j/c 0 1 2 3......n-1
则有:
f(n)=(n^2-n)/2,保留最高项和去掉系数后,可得此算法的时间复杂度为:n^2*/
例5(时间复杂度在递归上面的应用):
int Fac(int n) //求n的阶乘 ,时间复杂度为O(n)
{
if(n==0 || n==1)
{
return 1;
}
else
{
return n*Fac(n-1);
}
}
二、 空间复杂度问题
空间复杂度指:执行一个算法。需要额外的辅助空间和问题规模之间的关系,常数个同时间复杂度一样 用O(1)表示。
例1:
int Age1(int n) // 时间复杂度:O(n) ; 空间复杂度:O(1)
{
int age = 10;
for(int i=1;i<n;i++)
{
age += 2;
}
return age;
}
// 在此算法中,只定义了一个局部变量age,所以空间复杂度为O(1);
// 又因为代码执行次数为n次,所以时间复杂度为O(n) ;
例2(空间复杂度在递归上面的应用):
int Age(int n) // 时间复杂度:O(n) ; 空间复杂度:O(n)
{
int tmp;
if(n == 1)
tmp = 10;
else
tmp = Age(n-1) + 2;
return tmp;
}
//在递归算法中,每次将变量存储在栈中,并且在递归未完成时,不出栈,
因此占用的空间为n,空间复杂度为O(n);
// 又因为代码执行次数为n次,所以时间复杂度为O(n) ;