时间复杂度与空间复杂度

 算法复杂度分为时间复杂度和空间复杂度。 时间复杂度是指执行算法所需要的计算工作量;而空间复杂度是指执行这个算法所需要的内存空间。
时间复杂度:指的是执行一个算法,和问题规模之间的关函数系。用O(n)表示。
空间复杂度:执行一个算法,需要额外的辅助空间和问题规模之间的函数关系。用O(n)表示。
一、 时间复杂度问题
根据定义,求解算法的时间复杂度的具体步骤是:
找出算法中的基本语句;
  一般算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。
只保留最高阶项;
  计算基本语句执行次数的数量级,这就意味着只要保留最高阶项即可。
(3)不要系数;
  可以忽略所有低次幂和最高次幂的系数。因为当n增长速度极快时,系数的影响是微乎其微的,可以忽略不计。
(4) 用大Ο记号表示算法的时间性能;
  当n趋近于无穷大时,如果lim(T(n)/f(n))的值为不等于0的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n))。
 简单的说,就是保留求出次数的最高次幂,并且把系数去掉。举例如下:
例1:
在这里插入图片描述

例2:

{++x ; s=0; }

//f(n)=2*1(两个表达式,各执行一次)=2,即O(f(n))=O(1)(常数项语句时间复杂度为O(1))

在这里插入图片描述

例3:

for(int i = 1;i<n;i+=3) //  时间复杂度:O(n)  
 //此表达式i每次加3,相当于f(n) = 1/3*O(n),忽略系数后时间复杂度为:O(n)  

 
for(int i = 1;i<n;i+=2) //  时间复杂度:O(n) 
  //此表达式i每次加3,相当于f(n) = 1/2*O(n),忽略系数后时间复杂度为:O(n)  
 
for(int i = 1;i<n;i*=2) //  时间复杂度:O(log2(n)) 
// i每次值为1、2、4、8、16、32......n所以求的是x,同时2^x=n,所以x=log2(n)。

例4:

for(int i = 1;i<=n;i+=3)                    //(1)
{
     for(int j = 1;j<=i-1;j++)              //(2)
     {
         c[i][j]=0;                        //(3)
     }
} 

/*再求此代码块时间复杂度时,我们直接求算法中执行次数最多的那条语句,即
语句(3)的执行次数。又因为语句(2)执行一次,语句(3)执行一次。当i分别为1
到n时,语句(2)、(3)的执行次数分别如下:
i     1 2 3 4 ......n
j/c   0 1 2 3......n-1
则有:
f(n)=(n^2-n)/2,保留最高项和去掉系数后,可得此算法的时间复杂度为:n^2*/

例5(时间复杂度在递归上面的应用):

int Fac(int n) //求n的阶乘  ,时间复杂度为O(n) 
{
	if(n==0 || n==1)
	{
		return 1;
	}
	else
	{
		return n*Fac(n-1);
	}
}

二、 空间复杂度问题
空间复杂度指:执行一个算法。需要额外的辅助空间和问题规模之间的关系,常数个同时间复杂度一样 用O(1)表示。
例1:

int Age1(int n)  //  时间复杂度:O(n) ; 空间复杂度:O(1)
{
	int age = 10;
	for(int i=1;i<n;i++)
	{
		age += 2;
	}
	return age;
}
// 在此算法中,只定义了一个局部变量age,所以空间复杂度为O(1);
// 又因为代码执行次数为n次,所以时间复杂度为O(n) ;

例2(空间复杂度在递归上面的应用):

int Age(int n) //  时间复杂度:O(n) ; 空间复杂度:O(n)
{
	int tmp;
	if(n == 1)
		tmp = 10;
	else
		tmp = Age(n-1) + 2;
	return tmp;
}
//在递归算法中,每次将变量存储在栈中,并且在递归未完成时,不出栈,
  因此占用的空间为n,空间复杂度为O(n);
// 又因为代码执行次数为n次,所以时间复杂度为O(n) ;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值