数据结构---时间复杂度与空间复杂度

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


一、评价算法优劣的基本标准

(1)正确性。在合理的数据输入下,能够在有限的运行时间内得到正确的结果
(2)可读性。一个好的算法,应该便于人们阅读和互相交流,其次才是机器可执行性。
(3)健壮性。当输入的数据非法时,好的算法能适当做出正确反应和处理,而不是出现莫名其妙的输出结果。
(4)高效性。高效性包括时间和空间两个方面。时间高效值算法设计合理,执行效率高,用时间复杂度来衡量;空间高效指算法占用存储容量合理,可以用空间复杂度衡量。

二、时间复杂度

(1)时间频度 : 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
(2)时间复杂度: 在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。

我们来看下不同的时间复杂度的图表呈现
在这里插入图片描述
常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log n)<Ο(n)<Ο(nlog n)<Ο(n2)<Ο(n3)<…<Ο(2 ^n)<Ο(n!)

(3)求解算法的时间复杂度的具体步骤是:

1. 找出算法中的基本语句;

算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。

2. 计算基本语句的执行次数的数量级;

只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。

3. 用大Ο记号表示算法的时间性能。

将基本语句执行次数的数量级放入大Ο记号中。

如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。

下面来看些例子
1.O(1) Constant Complexity 常数复杂度

int n = 1;
cout << n;
cout << n + 1;
cout << n + 2;

2.O(n) Linear Complexity 线性时间复杂度

for(int i=1; i<=n; i++){
    cout<<i;
}

3.O(n^2) N square Complexity 平方复杂度

for(int i=1; i<=n; i++){
    for(int j=1; j<=n; j++){
        cout<<i+j;
    }
}

4.O(K^n) Exponential Growth 指数复杂度
k是一个常数。例如下面的求斐波那契数列的第n项代码,他的时间复杂度就是2的n次方。就属于指数复杂度的。

int fib(int n){
    if(n<2) return n;
    else
    	return fib(n-1) + fib(n-2);
}

5.O(log n) Logarithmic Complexity 对数复杂度

for(int i=1; i<n; i=i*2){
    cout<<i; 
}

6.O(nlog n) Logarithmic Complexity 线性对数复杂度

for(int i=0;i<n;i++)
	for(int j=0;j<n;j*=2)
		cout<<i+j;

三、空间复杂度

类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)S(n)定义为该算法所耗费的存储空间,它也是问题规模n的函数。渐近空间复杂度也常常简称为空间复杂度。
空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。一个算法在计算机存储器上所占用的存储空间,包括存储算法本身所占用的存储空间,算法的输入输出数据所占用的存储空间和算法在运行过程中临时占用的存储空间这三个方面。
如当一个算法的空间复杂度为一个常量,即不随被处理数据量n的大小而改变时,可表示为O(1);当一个算法的空间复杂度与以2为底的n的对数成正比时,可表示为0(log2n);当一个算法的空I司复杂度与n成线性比例关系时,可表示为0(n).若形参为数组,则只需要为它分配一个存储由实参传送来的一个地址指针的空间,即一个机器字长空间;若形参为引用方式,则也只需要为其分配存储一个地址的空间,用它来存储对应实参变量的地址,以便由系统自动引用实参变量。

1.o(1)复杂度

for(int i=0;i<n/2;i++){
	t=a[i];
	a[i]=a[i*2];
	a[i*2]=t;
}

上述代码只需借助一个变量t存储,与问题规模n无关
2.o(n)复杂度

for(int i=0;i<n;i++){
	b[i]=a[i*2]}
for(int i=0;i<n;i++){
	a[i]=b[i]
}

上述代码要借助另外一个大小为n的辅助数组b,则空间复杂度为o(n)

通常情况下,运算空间充足,所以对于算法的优劣评判我们主要关注时间复杂度

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值