题意:给平面n个点,求最近的两个点的距离。
思路:运用分治思想,对于n个点,可以分成T(n/2)+T(n/2)的规模,分界线是x坐标的中位数,
假设左边点集合为s1, 右边点集合为s2,那么最小值存在于以下三种情况中。
1.s1中任意两点距离的最小距离
2.s2中任意两点距离的最小距离
3.s1中的点到s2中的点的距离的最小距离
前两部分可以一直分治到底。
第三部分
对于左边每一个点,右边和他产生距离更小的点只能存在于
2d*d的矩形中,而对于2d/3*d/2的矩形,只可能存在一个点,所以点数最多不超过6个
这就使每一层的时间降到O(n),所以总复杂度为O(nlogn)
#include<bits/stdc++.h>
using namespace std;
const int N=2e5+10;
const double INF=1e18;
const double eps=1e-10;
struct Point{
double x, y;
bool operator < (const Point t) const{
return x<t.x;
}
}p[N], b[N];
int n;
inline double dis(Point a, Point b){
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
int dcmp(double x){
if(fabs(x)<eps) return 0;
return x<0?-1:0;
}
bool cmp(Point p1, Point p2){
return p1.y<p2.y;
}
double cdq(int l, int r){
double d=INF;
if(l>=r)return d;
int mid=(l+r)>>1;
d=min(d, cdq(l, mid)); d=min(d, cdq(mid+1, r));
int t=0;
for(int i=l; i<=r; i++){//选出距离中位线不超过d的点
if(dcmp(d-fabs(p[i].x-p[mid].x))>=0)
b[++t]=p[i];
}
sort(b+1, b+1+t, cmp);
for(int i=1; i<=t; i++){
for(int j=i+1; j<=t && fabs(b[i].y-b[j].y)<=d; j++){//对左边每一个点,找右边y不超过d的点
if(dis(b[i], b[j])-d<0)
d=dis(b[i], b[j]);
}
}
return d;
}
int main(){
scanf("%d", &n);
for(int i=1; i<=n; i++){
scanf("%lf%lf", &p[i].x, &p[i].y);
}
sort(p+1, p+1+n);
printf("%.4lf\n", cdq(1, n));
return 0;
}