p1429 平面最近点对

题意:给平面n个点,求最近的两个点的距离。

思路:运用分治思想,对于n个点,可以分成T(n/2)+T(n/2)的规模,分界线是x坐标的中位数,

假设左边点集合为s1, 右边点集合为s2,那么最小值存在于以下三种情况中。

1.s1中任意两点距离的最小距离

2.s2中任意两点距离的最小距离

3.s1中的点到s2中的点的距离的最小距离

前两部分可以一直分治到底。

第三部分

对于左边每一个点,右边和他产生距离更小的点只能存在于

2d*d的矩形中,而对于2d/3*d/2的矩形,只可能存在一个点,所以点数最多不超过6个

这就使每一层的时间降到O(n),所以总复杂度为O(nlogn)

#include<bits/stdc++.h>
using namespace std;
const int N=2e5+10;
const double INF=1e18;
const double eps=1e-10;

struct Point{
    double x, y;
    bool operator < (const Point t) const{
        return x<t.x;
    }
}p[N], b[N];
int n;
inline double dis(Point a, Point b){
    return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
int dcmp(double x){
    if(fabs(x)<eps) return 0;
    return x<0?-1:0;
}
bool cmp(Point p1, Point p2){
    return p1.y<p2.y;
}

double cdq(int l, int r){
    double d=INF;
    if(l>=r)return d;
    int mid=(l+r)>>1;
    d=min(d, cdq(l, mid)); d=min(d, cdq(mid+1, r));

    int t=0;
    for(int i=l; i<=r; i++){//选出距离中位线不超过d的点
        if(dcmp(d-fabs(p[i].x-p[mid].x))>=0)
                b[++t]=p[i];
    }
    sort(b+1, b+1+t, cmp);
    for(int i=1; i<=t; i++){
        for(int j=i+1; j<=t && fabs(b[i].y-b[j].y)<=d; j++){//对左边每一个点,找右边y不超过d的点
            if(dis(b[i], b[j])-d<0)
                d=dis(b[i], b[j]);
        }
    }
    return d;
}

int main(){
    scanf("%d", &n);

    for(int i=1; i<=n; i++){
        scanf("%lf%lf", &p[i].x, &p[i].y);
    }
    sort(p+1, p+1+n);

    printf("%.4lf\n", cdq(1, n));

    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值