《剑指offer》-[第6章:面试中的各种能力-6.3:知识迁移的能力]-题38:数字在排序数组中出现的次数

1、问题描述

求一个数出现在排序数组中的次数。

2、解题思路

  • (1)功能测试:输入排序数组为升序数组;输入排序数组为降序数组;输入排序数组中的元素全部相同;输入的数字在排序数组中不存在。
  • (2)边界值测试:排序数组中只有一个元素;
  • (3)特殊输入测试:排序数组为空;
  • 思路1:由于是有序数组,如果一个数在数组中出现多次,那么这些相同的数的位置一定相邻。在有序的数组中查找某个数可以采用二分查找,二分查找的思想是,每次将要查询数 k k k和数组中间位置的数对比,如果查询数k大于中间位置的数,那么在数组的右半部分查找,否则,在数组的左半部分查找。二分查找只负责找到一个等于查询数的数(或找不到),而至于查询数在在数组中出现的次数则无能为力。
  • 实际上,要想知道查询数 k k k出现的次数,只需在数组中找到第一个查询数和最后一个查询数即可。因此,我们可以对二分查找算法稍加修改,实现查询数在数组中出现次数的求解。具体步骤如下:
    <1>查找第一个k
    先将 k k k和数组中间的数 m m m进行比较,如果 k &lt; m k&lt;m k<m,则在m的左边查找;如果 k &gt; m k&gt;m k>m,则在m的右边查找;如果 k = = m k==m k==m,则看m前面的一个数是否等于 k k k,如果相等,则说明m不是第一个 k k k,第一个k在m的左边,继续在m的左边查找。
    <2>查找最后一个k
    先将 k k k和数组中间的数 m m m进行比较,如果 k &lt; m k&lt;m k<m,则在m的左边查找;如果 k &gt; m k&gt;m k>m,则在m的右边查找;如果 k = = m k==m k==m,则看m后面的一个数是否等于 k k k,如果相等,则说明m不是最后一个 k k k,最后一个k在m的右边,继续在m的右边查找。
  • 这种方法使用了两次二分查找算法来查找某个合乎要求的数。所以最终的时间复杂度为 O ( l o g n ) O(logn) O(logn)

3、代码实现

public class Solution {
    public int GetNumberOfK(int [] array , int k) {

        int number = 0;
        if (array == null || array.length == 0){
            number = 0;
        }
        else if(array.length == 1){
            if(array[0] == k){
                number = 1;
            }
        }
        else {
            int ld = GetFirstK(array,k,0,array.length - 1);
            int rd = GetLastK(array,k,0,array.length - 1);

            if(ld != -1 && rd != -1){
              number = rd - ld + 1;
            }

        }

        return  number;

    }
    public int GetFirstK(int [] array, int k, int left, int right){
        int index = -1;
        if (left <= right) {
            int middle = (right + left) >> 1;
            if (k < array[middle]) {
               index =  GetFirstK(array, k, left, middle -1);
            }
            else if(k > array[middle]){
               index =  GetFirstK(array, k, middle + 1,right);
            }
            else {
                if (middle != left){
                    if (array[middle - 1] == k) {
                        index = GetFirstK(array, k, left, middle - 1);
                    } else {
                        index = middle;
                    }
                }
                else {
                    index = middle;
                }

            }
        }
        return index;

    }
    public int GetLastK(int [] array, int k, int left, int right){
        int index = -1;
        if (left <= right) {
            int middle = (right + left) >> 1;
            if (k < array[middle]) {
                index = GetLastK(array, k, left, middle -1);
            }
            else if(k > array[middle]){
                index = GetLastK(array, k, middle + 1,right);
            }
            else {
                if (middle != right){
                    if (array[middle + 1] == k) {
                        index = GetLastK(array, k, middle + 1, right);
                    } else {
                        index = middle;
                    }
                }
                else {
                    index = middle;
                }

            }
        }
        return index;

    }

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Albert_YuHan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值