如何使用GPT API 自定义 自己的 RAG

要使用 GPT 的 API 实现自己的 RAG(Retrieval-Augmented Generation) 系统,可以结合检索工具和 GPT 模型,将外部知识库中的信息与生成模型结合起来,完成准确、高效的任务。以下是具体步骤和实现方法:

  • 系统架构设计

  1. 用户输入(Query Input)
    用户输入一个问题或任务请求,例如“请总结最近的气候变化研究进展”。

  2. 检索模块(Retrieval Module)
    检索与用户问题相关的外部信息,例如从数据库、文档库或网页中查找答案。

  3. 生成模块(Generation Module)
    将用户输入和检索到的信息结合,通过 GPT 的 API 生成上下文相关的回答或内容。

  4. 结果输出(Output Result)
    将 GPT 生成的内容返回给用户,完成任务。

  • 关键步骤与实现

1. 搭建知识库(Knowledge Base)
  • 选用数据源:

    • 企业文档、技术支持资料、学术文章、网页数据等。
  • 数据存储:

    • 使用数据库(如 PostgreSQL、MongoDB)或文件系统存储原始数据。
    • 推荐使用向量数据库(如 PineconeWeaviateFAISS),支持语义检索。
  • 构建索引:

    • 利用嵌入向量工具(如 OpenAI Embeddings、Sentence Transformers)将文档转化为向量并索引。
2. 检索相关信息
  • 检索工具选择:
    • 使用向量检索工具,如 FAISSPineconeElasticsearch
  • 检索流程:
    1. 将用户的查询转化为向量表示(Embedding)。
    2. 在知识库中通过向量相似性匹配,检索最相关的文档或片段。

# 示例:使用 OpenAI Embeddings 生成查询向量
import openai

query = "What are the latest advancements in AI?"
embedding = openai.Embedding.create(input=query, model="text-embedding-ada-002")
# 使用向量检索工具查找相关文档
retrieved_documents = search_in_vector_database(embedding['data'][0]['embedding'])
3. 调用 GPT API 生成回答
  • 输入设计(Prompt Engineering):

    • 将用户问题和检索到的内容拼接成一个上下文提示,传递给 GPT。
  • 调用 API 示例:

python

# 拼接提示词
retrieved_text = "Document 1: ... Document 2: ..."
prompt = f"根据以下内容回答问题:\n{retrieved_text}\n问题:{query}\n回答:"

# 调用 GPT 模型
response = openai.ChatCompletion.create(
    model="gpt-4",
    messages=[
        {"role": "system", "content": "你是一个知识丰富的助手。"},
        {"role": "user", "content": prompt}
    ]
)
print(response['choices'][0]['message']['content'])
4. 输出处理
  • 格式化 GPT 输出内容,以符合用户需求的样式(如摘要、段落、列表)。
  • 如果需要进一步调整,可以增加后处理步骤。

完整实现框架

  1. 准备环境:

    • 安装所需库:openai, pinecone, faiss, langchain 等。
  2. 代码框架示例:

import openai
import pinecone

# 初始化向量检索
pinecone.init(api_key="YOUR_API_KEY", environment="YOUR_ENV")
index = pinecone.Index("knowledge-base")

# Step 1: 用户输入
query = "What are the key benefits of renewable energy?"

# Step 2: 检索模块
# 获取查询的嵌入向量
query_embedding = openai.Embedding.create(input=query, model="text-embedding-ada-002")['data'][0]['embedding']
search_results = index.query(query_embedding, top_k=5, include_metadata=True)

# 整理检索到的内容
retrieved_content = "\n".join([result['metadata']['text'] for result in search_results['matches']])

# Step 3: 生成模块
prompt = f"根据以下内容回答问题:\n{retrieved_content}\n问题:{query}\n回答:"
response = openai.ChatCompletion.create(
    model="gpt-4",
    messages=[
        {"role": "system", "content": "你是一个知识丰富的助手。"},
        {"role": "user", "content": prompt}
    ]
)

# Step 4: 输出结果
answer = response['choices'][0]['message']['content']
print(answer)
  • 技术特点

  1. 动态知识更新:

    • 知识库可以随时扩展或更新,不需要重新训练模型。
  2. 减少幻觉问题:

    • 检索模块提供事实支持,增强生成内容的可信度。
  3. 高效性与灵活性:

    • 通过分离检索和生成,系统易于扩展和调整。
  • 适用场景

  1. 企业知识问答:

    • 为客户或员工提供基于内部文档的精准回答。
  2. 学术研究:

    • 从研究论文中提取信息并生成总结。
  3. 实时信息获取:

    • 使用最新网络爬取数据生成基于实时信息的内容。
  4. 产品推荐与支持:

    • 基于用户问题和知识库内容,生成个性化推荐或技术支持答案。
### 如何在 n8n 中配置和调用 GPT API 要在 n8n 中集成和使用 GPT API,可以通过创建自定义脚本节点或者利用现有的 HTTP 请求节点来完成。以下是具体方法: #### 配置 OpenAI 的 GPT API 密钥 首先需要获取 OpenAI 提供的 API Key,并将其存储在一个安全的地方以便后续访问。可以在 n8n 的凭证管理器中设置此密钥作为全局变量。 ```javascript // 设置环境变量以保护敏感数据 const apiKey = "{{ $credentials.apiKey }}"; ``` 此处 `$credentials` 是 n8n 内部机制的一部分,允许用户通过界面输入其个人认证信息而无需硬编码[^1]。 #### 使用 HTTP 节点发送请求至 GPT API n8n 支持多种内置节点类型之一即为 **HTTP Request Node** ,它可以直接向外部服务发起 GET 或 POST 请求。对于交互式 AI 接口如 GPT 来说通常采用后者形式提交 JSON 数据包给目标 URL 地址。 - **URL**: `https://api.openai.com/v1/completions` - **Method**: `POST` - **Headers** - 添加头文件字段名为 `"Authorization"` 值设为字符串前缀加上实际 token (`Bearer YOUR_API_KEY`)。 ```json { "Content-Type": "application/json", "Authorization": "Bearer {{apiKey}}" } ``` - **Body (JSON Format)** 下面是一个简单的例子展示如何构造 body 参数传递给服务器端处理逻辑: ```json { "model": "text-davinci-003", "prompt": "你好世界。", "max_tokens": 50, "temperature": 0.7 } ``` 上述代码片段中的每一项都有特定含义[^2]: - model: 所使用的语言模型版本号; - prompt: 用户提供的初始文本种子; - max_tokens: 返回的最大标记数量限制; - temperature: 控制随机性的参数值越低则结果更可预测反之更加多样化。 当以上所有步骤完成后就可以运行工作流程观察输出效果啦! 如果希望进一步简化操作过程也可以考虑开发专属插件扩展原生功能集[^4]。 ```python import openai openai.api_key = 'your_api_key_here' response = openai.Completion.create( engine="text-davinci-003", prompt="hello world.", max_tokens=60 ) print(response.choices[0].text.strip()) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值