- 博客(39)
- 资源 (2)
- 问答 (1)
- 收藏
- 关注
原创 2023需要重点关注的四大AI方向
本文是我认为2023年需要重点关注的四大AI方向,这四个方向有望在今年进一步推动AI的发展,并帮助解决行业面临的一些核心挑战。
2023-01-27 11:28:25
19
1
原创 【07】概率图推断之信念传播
变量消除算法有个致命的缺陷:每次查询都要要从头开始重新启动算法。这样会非常浪费资源,并且在计算上很麻烦。这个问题也很容易避免。通过在第一次运行变量消除算法后缓存这些因子,我们可以轻松地计算新的边缘概率查询,基本上不需要额外的成本。实现上面的功能有2中算法:信念传播(BP)和全联结树算法,本文先介绍信念传播算法。
2023-01-07 15:29:52
290
原创 【06】概率图推断之变量消除算法
事实证明,推理是一项颇具挑战的任务。对于很多我们感兴趣的概率,要准确回答这些问题都是NP难题。至关重要的是,推理是否容易处理取决于描述概率的图的结构。尽管有些问题很难解决,我们仍然可以通过近似推理方法获得有用的答案。
2022-12-28 13:38:23
165
原创 用Python绑定调用C/C++/Rust库
Python绑定可以让Python程序调用C/C++/Rust编译的库函数,从而让我们在不重复造轮子的前提下,兼具Python和C/C++二者的优点。
2022-12-20 14:51:31
288
原创 【12月17日更新决赛预测】用二元泊松模型预测2022年世界杯淘汰赛结果
双泊松模型有一个严重的缺陷,那就是它假设比赛中两队的比分是条件独立的。而我们都知道,在对抗性比赛中,两队的比分是存在关联的,双泊松模型可以描述比分的这种关联性,提高了比赛结果预测的准确度。
2022-12-05 14:12:18
2450
33
原创 OpenAI发布ChatGPT:程序员瞬间不淡定了
2月1日,OpenAI发布了针对对话场景优化的语言大模型ChatGPT。一经发布便受到科技圈的广泛关注,我第一时间体验了ChatGPT,给大家奉上最新鲜的体验报告。
2022-12-03 12:12:51
13271
10
原创 IPython工作原理
IPython的目标是为交互式和探索性计算创建一个全面、完整、易用的环境。本文带大家深入到IPython内部,看一下IPython的工作原理。
2022-12-02 11:57:22
309
1
原创 用Numba:一行代码将Python程序运行速度提升100倍
Numba是一款可以将python函数编译为机器代码的JIT编译器,由Anaconda公司主导开发,可以对Python原生代码进行CPU和GPU加速。Numba非常擅长加速数值运算,他对Numpy支持得非常好,Numpy经过Numba加速后的速度接近C和Fortran。
2022-11-25 18:26:16
470
原创 用PyPy加速Python程序
我们可以用更好的Python运行环境或运行时优化来提升Python的速度,其中最成熟、使用最简单的当属PyPy。用PyPy,可以在不改变源代码的情况下,获得平均3-4倍的性能提升。本文将带大家学习如何用PyPy加速Python程序。
2022-11-23 09:19:26
285
原创 深入理解Python生成器和yield
本文带大家深入地学习了生成器和`yield`语句。生成器在处理大文件大数据集时非常有用,它占用内存少,不会拖慢机器性能,从而能够更快的处理数据。
2022-11-22 01:06:23
232
原创 Python常见操作的时间复杂度
本文整理了Python中常见数据结构操作的时间复杂度,旨在帮助大家了解Python操作的性能,协助运行更快的代码。
2022-11-18 09:23:26
219
原创 Python性能优化指南--让你的Python代码快x3倍的秘诀
Python最为人诟病的就是其执行速度。如何让Python程序跑得更快一直是Python核心团队和社区努力的方向。本文将带大家深入探讨Python程序性能优化方法。
2022-11-18 07:20:49
807
2
原创 Rust机器学习之Polars
本文将带领大家学习Polars的基础用法,通过数据加载 --> 数据探索 --> 数据清洗 --> 数据操作一整个完整数据处理闭环,让大家学会如何用Polars代替Pandas进行数据处理。
2022-11-17 08:00:00
849
原创 Rust机器学习之ndarray
ndarray是Rust生态中用于处理数组的库。它包含了所有常用的数组操作。ndarray相当于Rust的numpy。要想用Rust做数据分析和机器学习离不开ndarray,本文就带大家了解一下ndarray的功能。
2022-11-11 15:55:21
884
1
原创 Rust交互式编程环境搭建(让Rust跑在Jupyter上)
数据科学和机器学习社区似乎压倒性地偏爱Jupyter Notebook。本文将带领大家一步一步搭建起Rust交互式编程环境。让Jupyter 可以运行Rust代码。
2022-11-10 10:09:47
788
原创 我为什么将机器学习主力语言从Python转到Rust
Rust语言诞生于2010年,一种多范式、系统级、高级通用编程语言,旨在提高性能和安全性,特别是无畏并发。虽然与Python相比,Rust还年轻,很多库还在开发中,但Rust社区非常活跃并且增长迅猛。很多大厂都是Rust基金会的成员,都在积极地用Rust重构底层基础设施和关键系统应用。
2022-11-09 15:26:30
3621
8
原创 因果发现方法概述
直到今天,发现因果关系仍然不是一件简单的事情,要么需要进行精心控制的实验,要么依赖人类的原始直觉。随着技术的不断进步,人工智能可以帮助我们发现因果关系。因果AI能够结合人类直觉和经验,通过观测数据自主发现因果关系。
2022-11-08 13:24:40
214
原创 用Python构建贝叶斯信念网络解决Monty Hall三门问题
本文将向你展示如何利用Python构建简单的贝叶斯信念网络,并用它来进行严格的推理。我们要建模的问题是著名的蒙提霍尔问题(也叫三门问题)。
2022-11-07 11:33:26
367
原创 【04】概率图表示之贝叶斯网络
有向图模型(又称贝叶斯网络)是一类概率分布,它让有向图可以自然地描述紧凑参数化。形式地讲,贝叶斯网络是一个有向图G = (V,E)。
2022-11-06 11:33:09
234
原创 为什么相关不等于因果
相关不等于因果。图表也会说谎,并非所有的相关性都蕴含因果关系。相关性是科学分析的重要组成部分,但如果使用不当,会带来很多误导。更可怕的是还有人会对图表巧妙包装,将图表设计的更具欺骗性。此时我们需要拿出因果为武器,驱逐虚假关联。
2022-11-06 01:25:00
217
原创 【02】概率图模型在真实世界中的应用
概率图模型有许多不同的实际应用。 为了激起大家对概率图模型的兴趣,也为了让大家能够对概率图模型有感性的认知,本章会分享概率图模型的诸多实际应用案例。
2022-11-03 16:03:24
534
原创 【01】什么是概率图模型?
概率图模型是机器学习的一个分支,重点研究如何利用概率分布描述真实世界并对其做出有价值的预测。本教程对图模型的讨论将分为三个主要部分:表示(如何描述模型)、推理(如何向模型提问)和学习(如何用现实数据训练模型)。这三个主题相辅相成,从零开始一步一步带你深入理解最前沿的因果AI理论。
2022-11-03 15:43:52
220
原创 Rust让科学计算速度提升200倍,然而事实真的是这样吗?
Rust 语言自身相对已经成熟,生态也足够丰富,并且在很多应用领域崭露头角。但是Rust陡峭的学习曲线让Rust目前依然是小众语言,缺乏成熟的开发者基础,这是CTO在引入Rust到技术栈时要考虑的重要问题。如果团队人才密度足够高,可以比较轻松地转到Rust,否则将会面临市场人才紧缺,能力参差不齐等问题,最终导致技术选型灾难。
2022-11-02 09:45:42
304
原创 【深度学习】基于TextCNN实现文本分类
参考Yoon Kim的论文"Convolutional Neural Networks for Sentence Classification",实现TextCNN卷积神经网络进行文本分类。
2022-11-01 17:01:34
471
原创 【附源代码】手把手教你用Python+uiautomator2手撸一款自动抢菜应用
【附源代码】手把手教你用Python+uiautomator2手撸一款抢菜软件1. 具有友好的图形界面;2. 使用简单,无需配置环境,无需抓包获取Token;3. 支持多设备同时抢菜;4. 支持叮咚、美团双平台;5. 支持Window和Mac操作系统;6. 免费、开源。
2022-10-31 11:33:41
151
原创 因果AI如何发现因果
因果发现算法可以从数据中找到因果关系的线索。其中条件独立是众多算法找寻的关键证据。经典的因果发现算法分2类,一类是基于约束的算法,另一类是基于分数的算法。本文介绍了基于约束的算法中最经典的PC算法的算法思想,让大家能够直观理解算法是如何发现因果关系的,并给出了因果发现算法中的一些不足。
2022-10-30 10:14:40
138
原创 【水论文必备技能】How To Be More Impressive
又到年度发论文的季节,教大家一个水论文的心法--”逆奥卡姆剃刀“,祝大家 #1024程序员节 快乐
2022-10-29 09:25:53
26
Discrete mean estimates and the Landau-Siegel zero.pdf
2022-11-06
CSDN编辑器如何加入SVG图片
2022-11-06
TA创建的收藏夹 TA关注的收藏夹
TA关注的人