相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现。现在政府决定大力发展百岛湖,发展首先要解决的问题当然是交通问题,政府决定实现百岛湖的全畅通!经过考察小组RPRush对百岛湖的情况充分了解后,决定在符合条件的小岛间建上桥,所谓符合条件,就是2个小岛之间的距离不能小于10米,也不能大于1000米。当然,为了节省资金,只要求实现任意2个小岛之间有路通即可。其中桥的价格为 100元/米。
Input输入包括多组数据。输入首先包括一个整数T(T <= 200),代表有T组数据。
每组数据首先是一个整数C(C <= 100),代表小岛的个数,接下来是C组坐标,代表每个小岛的坐标,这些坐标都是 0 <= x, y <= 1000的整数。
Output每组输入数据输出一行,代表建桥的最小花费,结果保留一位小数。如果无法实现工程以达到全部畅通,输出”oh!”.Sample Input
2 2 10 10 20 20 3 1 1 2 2 1000 1000Sample Output
1414.2 oh!
表面上看着十分复杂的一道题目,其实就是把点坐标转化成为边,要注意用double,构建两个结构体分别记录边的信息和点坐标的信息即可,然后跑一遍kruskal算法:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<math.h>
using namespace std;
#define MAXN 1000005
struct edge
{
int u,v;
double cost;
}e[1000005];
int n;
struct point
{
double x,y;
int num;
}p[MAXN];
int par[MAXN],ran[MAXN];
bool cmp(edge a,edge b)
{
return a.cost<b.cost;
}
void init(int n)
{
for(int i=1;i<=n;i++)
{
par[i]=i;
ran[i]=1;
}
}
int find(int x)
{
if(x==par[x])
{
return x;
}
return par[x]=find(par[x]);
}
void unite(int x,int y)
{
x=find(x);
y=find(y);
if(x==y) return ;
if(ran[x]<ran[y])
{
par[x]=y;
}
else
{
par[y]=x;
if(ran[x]==ran[y])
{
ran[x]++;
}
}
}
bool same(int a,int b)
{
return find(a)==find(b);
}
int main()
{
int t,n;
cin>>t;
while(t--)
{
int k=0;
scanf("%d",&n);
init(n);
for(int i=1;i<=n;i++)
{
cin>>p[i].x>>p[i].y;
p[i].num=i;
}
for(int i=1;i<n;i++)//把点的坐标转化成为边的信息
{
for(int j=i+1;j<=n;j++)
{
if(((p[j].x-p[i].x)*(p[j].x-p[i].x)+(p[j].y-p[i].y)*(p[j].y-p[i].y))>=100&&((p[j].x-p[i].x)*(p[j].x-p[i].x)+(p[j].y-p[i].y)*(p[j].y-p[i].y))<=1000000)
{
e[k].u=p[i].num;
e[k].v=p[j].num;
e[k].cost=sqrt((p[j].x-p[i].x)*(p[j].x-p[i].x)+(p[j].y-p[i].y)*(p[j].y-p[i].y));
k++;
}
}
}
sort(e,e+k,cmp);
double res=0;
int a,b;
for(int i=0;i<k;i++)
{
a=e[i].u;;
b=e[i].v;
if(!same(a,b))
{
unite(a,b);
res+=e[i].cost;
}
// cout<<e[i].u<<" "<<e[i].v<<" "<<e[i].cost<<endl;
}
int s=0;
for(int i=1;i<=n;i++)
{
if(par[i]==i)
{
s++;
}
}
if(s==1) printf("%.1lf\n",res*100);
else printf("oh!\n");
}
}