畅通工程再续(Prim算法)

本文介绍了一道算法题,题目要求在满足特定距离限制的条件下,连接所有岛屿以达到交通畅通,并求出最小成本。解题思路采用Prim算法,对不满足条件的岛屿间距离设为极大值,然后寻找最小生成树。易错点在于正确判断无法实现畅通的情况。AC代码使用C++编写,实现了问题的解决方案。
摘要由CSDN通过智能技术生成

畅通工程再续 HDU - 1875

目录

畅通工程再续 HDU - 1875

题目描述

解题思路

易错分析

AC代码


相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现。现在政府决定大力发展百岛湖,发展首先要解决的问题当然是交通问题,政府决定实现百岛湖的全畅通!经过考察小组RPRush对百岛湖的情况充分了解后,决定在符合条件的小岛间建上桥,所谓符合条件,就是2个小岛之间的距离不能小于10米,也不能大于1000米。当然,为了节省资金,只要求实现任意2个小岛之间有路通即可。其中桥的价格为 100元/米。

Input

输入包括多组数据。输入首先包括一个整数T(T <= 200),代表有T组数据。
每组数据首先是一个整数C(C <= 100),代表小岛的个数,接下来是C组坐标,代表每个小岛的坐标,这些坐标都是 0 <= x, y <= 1000的整数。

Output

每组输入数据输出一行,代表建桥的最小花费,结果保留一位小数。如果无法实现工程以达到全部畅通,输出”oh!”.

Sample Input

2
2
10 10
20 20
3
1 1
2 2
1000 1000

Sample Output

1414.2
oh!

题目描述:

给你多个岛的坐标,求这些岛全部相连的时候花费的最少的钱(最短路*100),其中两岛间的距离不能小于10,大于1000

解题思路:

把岛间的距离存入二维数组,如果两岛间的距离不满足题目要求的话,就把它们的距离变为特别大的数(比如等于我们prim里面用的判断离1最短的距离的min值也就是初始化的大值),如果有不满足条件的岛间距的话,只需要判断它的值是不是inf即可,如果是的话,跳出循环输出oh!不然的话输出值乘以100

易错分析:

我把不满足的值刚开始赋值为0,然后sum值判断是不是刚开始初始化的0.0,答案错误,然后就是利用了一个数值存有几个岛间距满足题目要求,最后判断这个值是否和岛的数量相同,但是答案错误,为啥俺也不知道

AC代码

#include<stdio.h>
#include<math.h>
#include<algorithm>
#include<string.h>
double inf=999999.0;
double e[1250][1250],dis[1250];
using namespace std;
int main(void)
{
	int n,m,u,a,v,t,book[1250];
	int find;
	scanf("%d",&t);
	while(t--)
	{
		find=0;
		scanf("%d",&n);
		double x[1250],y[1250];
		for(int i=1;i<=n;i++)
		{	
			scanf("%lf %lf",&x[i],&y[i]);	
		}
		double ans;
		for(int i=1;i<=n;i++)
		{
			for(int j=1;j<=n;j++)
			{
				e[i][j]=e[j][i]=sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));	
			}	
		}
		for(int i=1;i<=n;i++)
			for(int j=1;j<=n;j++)
				if(e[i][j]>1000||e[i][j]<10)
					e[i][j]=inf;
		for(int i=1;i<=n;i++)
		{
			dis[i]=e[1][i];
			book[i]=0;
		}
		book[1]=1;
		int k;
		double min,sum=0.0;
		for(int i=1;i<n;i++)
		{
			k=1;
			min=inf;
			for(int j=1;j<=n;j++)
			{
				if(book[j]==0&&dis[j]<min)
				{
					min=dis[j];
					u=j;
				}
			}
			if(min==inf)
			{
				find=1;
				break;
			}
			
			book[u]=1;
			sum+=dis[u];
			if(dis[u]<=1000&&dis[u]>=10)
				k++;
			for(v=1;v<=n;v++)
			{
				if(book[v]==0&&dis[v]>e[u][v])
					dis[v]=e[u][v];	
			}	
		}
		if(find!=1)
		printf("%.1f\n",sum*100);
		else if(find==1)
		printf("oh!\n");
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值