畅通工程再续 HDU - 1875
目录
相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现。现在政府决定大力发展百岛湖,发展首先要解决的问题当然是交通问题,政府决定实现百岛湖的全畅通!经过考察小组RPRush对百岛湖的情况充分了解后,决定在符合条件的小岛间建上桥,所谓符合条件,就是2个小岛之间的距离不能小于10米,也不能大于1000米。当然,为了节省资金,只要求实现任意2个小岛之间有路通即可。其中桥的价格为 100元/米。
Input
输入包括多组数据。输入首先包括一个整数T(T <= 200),代表有T组数据。
每组数据首先是一个整数C(C <= 100),代表小岛的个数,接下来是C组坐标,代表每个小岛的坐标,这些坐标都是 0 <= x, y <= 1000的整数。
Output
每组输入数据输出一行,代表建桥的最小花费,结果保留一位小数。如果无法实现工程以达到全部畅通,输出”oh!”.
Sample Input
2
2
10 10
20 20
3
1 1
2 2
1000 1000
Sample Output
1414.2
oh!
题目描述:
给你多个岛的坐标,求这些岛全部相连的时候花费的最少的钱(最短路*100),其中两岛间的距离不能小于10,大于1000
解题思路:
把岛间的距离存入二维数组,如果两岛间的距离不满足题目要求的话,就把它们的距离变为特别大的数(比如等于我们prim里面用的判断离1最短的距离的min值也就是初始化的大值),如果有不满足条件的岛间距的话,只需要判断它的值是不是inf即可,如果是的话,跳出循环输出oh!不然的话输出值乘以100
易错分析:
我把不满足的值刚开始赋值为0,然后sum值判断是不是刚开始初始化的0.0,答案错误,然后就是利用了一个数值存有几个岛间距满足题目要求,最后判断这个值是否和岛的数量相同,但是答案错误,为啥俺也不知道
AC代码
#include<stdio.h> #include<math.h> #include<algorithm> #include<string.h> double inf=999999.0; double e[1250][1250],dis[1250]; using namespace std; int main(void) { int n,m,u,a,v,t,book[1250]; int find; scanf("%d",&t); while(t--) { find=0; scanf("%d",&n); double x[1250],y[1250]; for(int i=1;i<=n;i++) { scanf("%lf %lf",&x[i],&y[i]); } double ans; for(int i=1;i<=n;i++) { for(int j=1;j<=n;j++) { e[i][j]=e[j][i]=sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j])); } } for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) if(e[i][j]>1000||e[i][j]<10) e[i][j]=inf; for(int i=1;i<=n;i++) { dis[i]=e[1][i]; book[i]=0; } book[1]=1; int k; double min,sum=0.0; for(int i=1;i<n;i++) { k=1; min=inf; for(int j=1;j<=n;j++) { if(book[j]==0&&dis[j]<min) { min=dis[j]; u=j; } } if(min==inf) { find=1; break; } book[u]=1; sum+=dis[u]; if(dis[u]<=1000&&dis[u]>=10) k++; for(v=1;v<=n;v++) { if(book[v]==0&&dis[v]>e[u][v]) dis[v]=e[u][v]; } } if(find!=1) printf("%.1f\n",sum*100); else if(find==1) printf("oh!\n"); } return 0; }