LSA和SVD两种矩阵分解


谈谈SVD和LSA





首先SVD和LSA是什么呢,SVD全称是singular value decomposition,就是俗称的奇异值分解,SVD的用处有很多,比如可以做PCA(主成分分析),做图形压缩,做LSA,那LSA是什么呢,LSA全称Latent semantic analysis,中文的意思是隐含语义分析,LSA算是topic model的一种,对于LSA的直观认识就是文章里有词语,而词语是由不同的主题生成的,比如一篇文章包含词语计算机,另一篇文章包含词语电脑,在一般的向量空间来看,这两篇文章不相关,但是在LSA看来,这两个词属于同一个主题,所以两篇文章也是相关的。


特征值特征向量


要谈到SVD,特征值和特征向量是需要首先交代的。具体内容可以在wiki上看,这里我做个简单的介绍。对于方阵M如果有


M∗v=λ∗v
v是个向量,λ是个数,那么我们称v是M的特征向量,λ是M的特征值,并且我们可以对M进行特征分解得到


M=Q∗Λ∗Q−1
其中Q是特征向量组成的矩阵,Λ是对角阵,对角线上的元素就是特征值。对于特征的几何理解就是矩阵M其实是一种线性变换,而线性变换对于向量的影响有两种,旋转和拉伸,而特征向量就是在这种线性变换下方向保持不变的向量,但是长度还是会作相应的拉伸,特征值就是拉伸的程度。


从另一个角度说如果我们取特征值比较大的几项,那么就是对原矩阵做了一种近似。


M≈Q1..k∗Λ1..k∗Q−11..k
这样我们就可以用更少的元素去近似的表示原矩阵,但是特征分解的限制比较多,比如要求矩阵必须是方阵


奇异值分解


wiki是个好东西,你要想深入了解的话,建议还是去看wiki。奇异值分解是将矩阵变成了这样的形式


M=U∗Σ∗VT
其中Σ依旧是对角阵,而U和V是正交矩阵正交矩阵是说U∗UT=I。


我们还是先回到矩阵是线性变换这个思路上。






如果我们用M去作用空间里的一组基,那么我们就会得到另一组基,如上图那样。那么我们旋转一下最初的一组基。






这样我们经过M的变换由一组正交基变换到了另一组正交基上面。也是也就是下面这样。






也就是我们有


M∗v1=σ1∗u1
M∗v2=σ2∗u2
并且对于任意一个向量x,我们有


x=v1∗(vT1∗x)+v2∗(vT2∗x)
于是我们可以得到


M∗x=M∗v1∗(vT1∗x)+M∗v2∗(vT2∗x)
M∗x=σ1∗u1∗(vT1∗x)+σ2∗u2∗(vT2∗x)
M=σ1∗u1∗vT1+σ2∗u2∗vT2
M=U∗Σ∗VT
恩,我们得到了和特征值和特征向量相似的东西,SVD分解出来的就是在M的线性变换下,正交基变换仍是正交基,而奇异值就是拉伸的程度。其实SVD和特征值和特征向量的关系还是很大的。


M∗MT=U∗Σ∗VT∗V∗ΣT∗UT
M∗MT=U∗Σ2∗UT
也就是说SVD求出的是M∗MT和MT∗M的特征向量。同样的得到这SVD分解这种形式后我们就可以利用他来对原数据进行降维操作。






这里我们分别将RBG矩阵进行SVD,左上角的是原图,其他的依次是取最大的100个,50个,20个,10个,5个奇异值做的近似图像。

# -*- coding: utf-8 -*-
 
from scipy import linalg, dot
from PIL import Image
 
def main(num=5):
    im = Image.open('ai.jpg')
    pix = im.load()
    ma = [[], [], []]
    for x in xrange(im.size[0]):
        for i in xrange(3):
            ma[i].append([])
        for y in xrange(im.size[1]):
            for i in xrange(3):
                ma[i][-1].append(pix[x, y][i])
    for i in xrange(3):
        u, s, v = linalg.svd(ma[i])
        u = u[:, :num]
        v = v[:num, :]
        s = s[:num]
        ma[i] = dot(dot(u, linalg.diagsvd(s, num, num)), v)
    for x in xrange(im.size[0]):
        for y in xrange(im.size[1]):
            ret = []
            for i in xrange(3):
                tmp = int(ma[i][x][y])
                if tmp < 0:
                    tmp = 0
                if tmp > 255:
                    tmp = 255
                ret.append(tmp)
            pix[x, y] = tuple(ret)
    im.show()
    im.save('test.jpg')
 
if __name__ == '__main__':
    main()



如果对矩阵先进行归一化,再SVD就是PCA的形式了,这种形式可以用方差最大化或者误差最小化来求得,具体可以去看PCA相关的东西。所以和scturtle讨论了下直接SVD的意义,但是最后也没得出什么结论。。。


隐含语义分析


终于讲到最后的隐含语义分析了,首先我们构造文本和词语的矩阵,也就是对于矩阵来说每一个向量表示一篇文章,每个向量里就是单词的出现次数(更好的是每个是单词的tf/idf值,tf/idf不在赘述,具体可以看wiki)。那么SVD分解之后,我们就得到了降维的矩阵,就是下面这个样子






就是说原来我们有1000000篇文章,总共有500000个单词,我们保留最大的100个来做降维,于是现在我们可以这样理解,我们保留了100个主题,其中U是文章对应的主题分布,而V则是主题对应的词语的分布,这样,我们可以减少噪音,并且这样计算文章间的相关性也更加合理,并且可以把相关的单词聚合到一起。代码如下


# -*- coding: utf-8 -*-
 
import os
import re
import heapq
import codecs
from math import log
from scipy import linalg
 
import unigram_good_turing as seg
 
seg.init()
 
def tfidf(docs):
    doclen = len(docs)+1.0
    for doc in docs:
        wordtotal = sum(doc.values())+0.0
        for word in doc:
            tf = doc[word]/wordtotal
            idf = log(doclen/(sum([word in tmp for tmp in docs])+1))
            doc[word] = tf*idf
    return docs
 
def solve(data):
    re_zh, re_other = re.compile(ur"([\u4E00-\u9FA5]+)"), re.compile(ur"[^a-zA-Z0-9+#\n]")
    blocks = re_zh.split(data)
    for item in blocks:
        if re_zh.match(item):
            for i in seg.solve(item):
                yield i
        else:
            tmp = re_other.split(item)
            for x in tmp:
                if x != '':
                    pass
 
def show(dic, p):
    p = heapq.nlargest(10, enumerate(p), key=lambda x:x[1])
    print ' '.join(map(lambda x:dic[x[0]], p))
 
def main():
    names = os.listdir('text')
    dic = {}
    cnt = 0
    ma = []
    for name in names:
        data = codecs.open('text/'+name, 'r', 'utf-8').read()
        doc = {}
        for word in solve(data):
            if not word in dic:
                dic[word] = cnt
                cnt += 1
            tmp = dic[word]
            if tmp not in doc:
                doc[tmp] = 0
            doc[tmp] += 1
        ma.append(doc)
    ma = tfidf(ma)
    ret = []
    for item in ma:
        tmp = []
        for i in xrange(cnt):
            if i in item:
                tmp.append(item[i])
            else:
                tmp.append(0)
        ret.append(tmp)
    u, s, v = linalg.svd(ret)
    for i in xrange(10):
        show(dict(zip(dic.values(), dic.keys())), list(v[i]))
 
if __name__ == '__main__':
    main()


  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: LSA(Latent Semantic Analysis)是一种基于矩阵分解的文本语义分析方法,其种类和结构如下: 1. 基于奇异值分解(SVD)的LSA:该方法将文本集合表示成一个矩阵,然后对该矩阵进行奇异值分解,从而得到文本集合的主题空间表示。 2. 基于隐含狄利克雷分布(LDA)的LSA:该方法将文本集合表示成一个以主题为隐变量的概率模型,通过对该模型进行推理,得到文本集合的主题空间表示。 3. 基于非负矩阵分解(NMF)的LSA:该方法将文本集合表示成一个非负矩阵,然后对该矩阵进行非负矩阵分解,从而得到文本集合的主题空间表示。 4. 基于二元共现矩阵的LSA:该方法将文本集合中的词语表示成一个二元共现矩阵,然后对该矩阵进行奇异值分解,从而得到文本集合的主题空间表示。 5. 基于词向量的LSA:该方法将文本集合中的每个词语表示成一个向量,然后对该向量矩阵进行奇异值分解,从而得到文本集合的主题空间表示。 以上是LSA的常见种类和结构,不同的LSA方法适用于不同的文本语义分析任务。 ### 回答2: LSA(潜在语义分析)是一种用于文本和语义分析的统计模型。它可以捕捉文本中的语义关系,用于文本相似性计算、信息检索和自然语言处理等任务。LSA主要有以下两种种类和结构: 1. 单词-文档矩阵结构:在这种结构下,文本被表示为一个由单词和文档构成的矩阵。矩阵的每一行代表一个文档,每一列代表一个单词。矩阵的元素可以是词频、TF-IDF分数等。然后,通过对该矩阵进行奇异值分解(SVD),得到单词-主题矩阵和主题-文档矩阵。其中,单词-主题矩阵表示每个主题与每个单词的关系,主题-文档矩阵表示每个主题与每个文档的关系。 2. 词嵌入模型结构:词嵌入模型是一种将词汇映射到连续向量空间中的模型,可以捕捉词汇语义的表示。LSA可以通过使用矩阵分解方法(如SVD)来实现词嵌入模型。在这种结构下,单词和文档被表示为低维的向量空间,并通过计算余弦相似度等指标来衡量它们之间的语义相似性。 总的来说,LSA的种类主要有基于单词-文档矩阵结构和词嵌入模型结构。这些结构可以帮助我们理解文本的语义关系,提取文本特征以及解决文本相关的任务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值