BAB因子(Betting Against Beta)的构建和SAS实证复刻

文章通过复刻Frazzini和Pedersen的BAB因子,探讨了中国A股市场中β与α的关系。研究发现,低β股票的α普遍高于高β股票,验证了股票β增大时α下降的假设。实证结果显示,BAB因子在中国市场表现出显著的正超额收益,表明在中国市场中,BAB策略仍具有一定的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

资源:BAB因子复刻SAS代码

一、引言与综述

早期的实证研究发现,美国股票的证券市场线(SML)与标准CAPM相比更为平坦,这说明风险与收益的关系不能非常很好的满足CAPM。基于此Black et al.(1972)提出了改进版的双因子CAPM模型,即Black CAPM模型:

E [ r j ] = E [ r z ] ( 1 − β j ) + E [ r m ] β j E[r_j]=E[r_z](1-\beta_j)+E[r_m]\beta_j E[rj]=E[rz](1βj)+E[rm]βj

相较于原CAPM模型,该模型对美国股市的实证解释能力更强。此外,不少学者从考虑融资约束的CAPM模型角度,讨论了证券市场线的平坦性。Black et al.(1972)的研究开创了研究β和α反向关系的先河。

Frazzini et al.(2014)继承证券市场线更为平坦的观点,从资金限制的角度说明 α \alpha α 和夏普比率会随着 β \beta β 的增大而下降。他认为对于使用杠杆受到限制的投资者而言,他们会更倾向于增持高 β \beta β 股票,这会导致高 β \beta β 股票相较于低 β \beta β 股票而言,其风险调整收益更低。基于此,Frazzini et al.(2014)根据股票事前 β \beta β 的分组构建了BAB因子。该文献提出了5条假设:

(1)股票 β \beta β 的增大意味着 α \alpha α 的下降。
(2)BAB因子会产生显著的正收益。
(3)当资金约束收紧时,BAB因子的收益率降低。
(4)资金流动性风险的增加将 β \beta β 压缩为1。
(5)受约束的投资者更偏好于持有风险较高的资产。

在理论模型构建上,该文献采用了一个代际交叠模型(OLG)对上述5条假设给出解释。OLG模型中包含几种不同类型的代理人。一些代理人无法使用杠杆,因此增持了高贝塔值的资产,导致这些资产的回报率较低。其他代理人可以使用杠杆,但面临保证金限制。不受约束的代理人减持或卖空高贝塔资产,并购买低贝塔资产。上述模型可以推出一条更平坦的证券市场线,斜率取决于代理人之间的平均边际融资约束 λ \lambda λ ;模型给出某支股票相对于市场的 α \alpha α

α t s = ψ t ( 1 − β t s ) \alpha_{ts}=\psi_t(1-\beta_{ts}) αts=ψt(1βts)

β \beta β 对应着 α \alpha α 的下降;此外,BAB因子的预期超额回报为正:

E t ( r t + 1 B A B ) = β t H − β t L β t H

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值