python 筛选出excel表格中某列中所有文本并存入list中

data = pd.read_excel('C:\\Users\\Thinkpad\\Desktop\\临时数据表格\\扬压力.xls') #打开表格
#根据设计编号进行分组求和
a = data.groupby('设计编号').sum()
#根据设计编号进行分组求和数据写入临时表ls.xls中
a.to_excel("C:\\Users\\Thinkpad\\Desktop\\临时数据表格\\ls.xls")
#从临时表ls.xls中读取数据
data1 = pd.read_excel('C:\\Users\\Thinkpad\\Desktop\\临时数据表格\\ls.xls')
#从临时表ls.xls中读取设计编号列的数据并转化成list
sjbh = list(data1['设计编号'])
#获取设计编号筛选文本个数
i = len(sjbh)
#遍历获取设计编号文本
k = 0
dk = pd.DataFrame()
while k < i:
    #print(sjbh[k])
    FF = data.loc[data['设计编号'] == sjbh[k]]  # 搜索设计编号中等于sjbh[k]开头的数据
    FF.to_excel("C:\\Users\\Thinkpad\\Desktop\\临时数据表格\\FF.xls", index=False)
    k = k+1
    bb = pd.read_excel("C:\\Users\\Thinkpad\\Desktop\\临时数据表格\\FF.xls", 'Sheet1')
    #获取FF表格中需要获取的列数据
    df = pd.DataFrame({"时间": list(bb["时间"]), "设计编号": list(bb["设计编号"]), "扬压力值": list(bb["模数值"])})
    df["时间"] = df["时间"].astype("datetime64")  # 确保数据格式为日期
    date_range = pd.date_range(start=s_date, end=e_date, freq="D")  # freq="D"表示按天,可以按分钟,月,季度,年等
    df_date_new = df.set_index("时间").reindex(index=date_range)  # 使用pandas.reindex填充缺失的索引

    df_date_new.to_excel("C:\\Users\\Thinkpad\\Desktop\\临时数据表格\\FF.xls", index=True, index_label="时间")

    data_new = pd.read_excel('C:\\Users\\Thinkpad\\Desktop\\临时数据表格\\FF.xls')  # 打开表格

    df_all = pd.concat([dk, data_new], ignore_index=False)  # concat 合并有相同字段名的dataframe
    print(df_all)
    data_list = df_all.drop_duplicates(keep='first')  # 避免字段名重复写入,一般会做去重处理
    df_all.to_excel("C:\\Users\\Thinkpad\\Desktop\\数据最终处理结果\\扬压力new.xls")  # 写出数据
    # 读取扬压力new中Sheet1中的数据
    dk = pd.DataFrame(pd.read_excel("C:\\Users\\Thinkpad\\Desktop\\数据最终处理结果\\扬压力new.xls", 'Sheet1'))
    # 删除未命名列
    dk = dk[dk.columns.drop(list(dk.filter(regex='Unnamed')))]
    # 将去除重复行的数据输出到excel表中
    dk.to_excel("C:\\Users\\Thinkpad\\Desktop\\数据最终处理结果\\扬压力new.xls")
    # 读取扬压力new中Sheet1中的数据
    dk = pd.DataFrame(pd.read_excel("C:\\Users\\Thinkpad\\Desktop\\数据最终处理结果\\扬压力new.xls", 'Sheet1'))


# 时间列只保留年月日格式
dk = pd.read_excel('C:\\Users\\Thinkpad\\Desktop\\数据最终处理结果\\扬压力new.xls') #打开表格
dk['时间'] = pd.to_datetime(dk['时间']).dt.date
# 删除未命名列
dk = dk[dk.columns.drop(list(dk.filter(regex='Unnamed')))]
dk.to_excel('C:\\Users\\Thinkpad\\Desktop\\数据最终处理结果\\扬压力new.xls')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数字化信息化智能化解决方案

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值