用python实现针对输入视频进行人脸识别输出

要使用Python对输入视频进行人脸识别,你需要使用一些特定的库。最常用的库包括OpenCV用于视频处理,以及dlib或face_recognition用于人脸识别。以下是一个使用face_recognition库的简单示例。

首先,确保你已经安装了必要的库。如果没有,可以使用pip来安装:

 

bash复制代码

pip install opencv-python
pip install face_recognition

然后,你可以使用以下代码对输入视频进行人脸识别:

 

python复制代码

import cv2
import face_recognition
# 加载已知人脸的图像和对应的名字
known_face_encodings = []
known_face_names = []
# 这里假设你有一个名为"known_faces"的文件夹,其中包含已知人脸的图像
for file in os.listdir("known_faces"):
img = face_recognition.load_image_file("known_faces/" + file)
encoding = face_recognition.face_encodings(img)[0]
known_face_encodings.append(encoding)
known_face_names.append(os.path.splitext(file)[0])
# 加载输入视频
video_capture = cv2.VideoCapture('input_video.mp4')
while True:
# 逐帧读取视频
ret, frame = video_capture.read()
if not ret:
break
# 在每一帧中进行人脸识别
face_locations = face_recognition.face_locations(frame)
face_encodings = face_recognition.face_encodings(frame, face_locations)
# 遍历识别出的每个人脸
for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings):
# 尝试将当前人脸与已知人脸进行匹配
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
# 如果找到匹配项,则获取对应的名字
if True in matches:
first_match_index = matches.index(True)
name = known_face_names[first_match_index]
# 在视频帧上画出人脸的矩形框,并显示名字
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
cv2.putText(frame, name, (left + 6, bottom - 6), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
# 显示结果帧
cv2.imshow('Video', frame)
# 如果按下'q'键,则退出循环
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放视频捕获对象并关闭所有窗口
video_capture.release()
cv2.destroyAllWindows()

注意:这个代码示例假设你有一个名为"known_faces"的文件夹,其中包含已知人脸的图像,并且这些图像的文件名不包含扩展名,而是直接包含人的名字。例如,如果你有一个名为"john.jpg"的图像,那么"john"就会被认为是这个人的名字。

此外,这个代码示例只考虑了与已知人脸的最佳匹配。在实际应用中,你可能需要考虑多个匹配项,或者设置一个阈值来决定何时认为找到了匹配项。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数字化信息化智能化解决方案

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值