要使用Python对输入视频进行人脸识别,你需要使用一些特定的库。最常用的库包括OpenCV用于视频处理,以及dlib或face_recognition用于人脸识别。以下是一个使用face_recognition
库的简单示例。
首先,确保你已经安装了必要的库。如果没有,可以使用pip来安装:
bash复制代码
pip install opencv-python | |
pip install face_recognition |
然后,你可以使用以下代码对输入视频进行人脸识别:
python复制代码
import cv2 | |
import face_recognition | |
# 加载已知人脸的图像和对应的名字 | |
known_face_encodings = [] | |
known_face_names = [] | |
# 这里假设你有一个名为"known_faces"的文件夹,其中包含已知人脸的图像 | |
for file in os.listdir("known_faces"): | |
img = face_recognition.load_image_file("known_faces/" + file) | |
encoding = face_recognition.face_encodings(img)[0] | |
known_face_encodings.append(encoding) | |
known_face_names.append(os.path.splitext(file)[0]) | |
# 加载输入视频 | |
video_capture = cv2.VideoCapture('input_video.mp4') | |
while True: | |
# 逐帧读取视频 | |
ret, frame = video_capture.read() | |
if not ret: | |
break | |
# 在每一帧中进行人脸识别 | |
face_locations = face_recognition.face_locations(frame) | |
face_encodings = face_recognition.face_encodings(frame, face_locations) | |
# 遍历识别出的每个人脸 | |
for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings): | |
# 尝试将当前人脸与已知人脸进行匹配 | |
matches = face_recognition.compare_faces(known_face_encodings, face_encoding) | |
name = "Unknown" | |
# 如果找到匹配项,则获取对应的名字 | |
if True in matches: | |
first_match_index = matches.index(True) | |
name = known_face_names[first_match_index] | |
# 在视频帧上画出人脸的矩形框,并显示名字 | |
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) | |
cv2.putText(frame, name, (left + 6, bottom - 6), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2) | |
# 显示结果帧 | |
cv2.imshow('Video', frame) | |
# 如果按下'q'键,则退出循环 | |
if cv2.waitKey(1) & 0xFF == ord('q'): | |
break | |
# 释放视频捕获对象并关闭所有窗口 | |
video_capture.release() | |
cv2.destroyAllWindows() |
注意:这个代码示例假设你有一个名为"known_faces"的文件夹,其中包含已知人脸的图像,并且这些图像的文件名不包含扩展名,而是直接包含人的名字。例如,如果你有一个名为"john.jpg"的图像,那么"john"就会被认为是这个人的名字。
此外,这个代码示例只考虑了与已知人脸的最佳匹配。在实际应用中,你可能需要考虑多个匹配项,或者设置一个阈值来决定何时认为找到了匹配项。