实例化对象的相关问题集

一,实例化一个子类时java在new实例化的时候,为什么“一定”会要调用父类的构造方法,对父类实例化还是什么? 

JVM装载一个类的时候,首先检查他有没有父类,如果有父类则装载父类,然后再装载该类,装载!=实例化,但要开辟内存,这些类都放在JVM的方法区内,类实例化后的对象放在JVM的堆内。
实例化一个子类时,父类一定被装载,但并不是实例化。而super则指向的就是方法区中装载父类的空间。这个空间存放的则是父类的一些成员。装载父类的过程会先初始化这些成员。以便在实例化子类时需用/子类来继承。(需要多理解下JVM虚拟机的原理)
******************************
后续还会加入更深层次的理解,以及更多的疑惑解答。


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Python线性回归实例是一种被广泛应用于数据处理、机器学习以及数据挖掘领域的算法。在机器学习中,线性回归通常用于预测连续型变量,比如预测股票价格、房价等等。在本文中,我们将提供一个Python线性回归实例,并且将会涉及到如何读取、分析、可视化、拟合数据等等。 首先,我们需要导入所需的Python库,例如 numpy, pandas 和 matplotlib 以及 sklearn 库,它包括线性回归功能。我们可以使用 Pandas 读取 CSV 文件并输出前几行。 ```python import pandas as pd import numpy as np from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt # 读取数据并显示前 5 行 df = pd.read_csv('path/to/csv') df.head() ``` 接下来,我们需要将数据拆分为样本数据和标签数据。在这个例子中,我们将使用散点图来描述数据。 ```python x = df['feature'].values.reshape(-1, 1) y = df['label'] plt.scatter(x, y) plt.xlabel('Feature') plt.ylabel('Label') plt.show() ``` 接下来,我们可以创建一个线性回归对象并拟合数据。我们可以使用该模型预测之前未出现过的新值。 ```python lr = LinearRegression() lr.fit(x, y) y_pred = lr.predict(x) plt.scatter(x, y) plt.plot(x, y_pred, color='red') plt.xlabel('Feature') plt.ylabel('Label') plt.show() ``` 最后,我们可以输出回归方程(系数)及 R2 值来描述模型预测的准确性。 ```python print('Intercept:', lr.intercept_) print('Coefficients:', lr.coef_) print('R2 value:', lr.score(x, y)) ``` Python线性回归实例是指应用 Python 编程语言编写实现线性回归算法的实例。其中,线性回归是一种常见的机器学习算法,主要用于预测与观测值相关的连续值变量。在实现过程中,我们可以使用 sklearn 库提供的线性回归方法进行模型拟合和预测。通过对数据的可视化分析来构建回归模型,并通过计算 R2 值来评估模型预测的准确性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mapc我

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值