原题目:
You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
解析:若n=1则只有一种方法,n=2则有2种方法,当n>=3,时,到第n阶的方法数等于到第n-1阶与到第n-2阶的方法数之和。显然,这是一个斐波那契数列,由此关系式,通过迭代可以在O(n)复杂度内求解(递归超时)。class Solution {
public:
int climbStairs(int n) {
if(n==1) return 1;
else if(n==2) return 2;
else
{
int c = 3, c1 = 2, t;
for(int i=4; i<=n; i++)
{
t = c;
c = c + c1;
c1 = t;
}
return c;
}
}
};