陈子文好帅
码龄5年
关注
提问 私信
  • 博客:27,070
    27,070
    总访问量
  • 36
    原创
  • 1,171,908
    排名
  • 37
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖北省
  • 加入CSDN时间: 2019-06-11
博客简介:

dudu199806的博客

查看详细资料
个人成就
  • 获得115次点赞
  • 内容获得41次评论
  • 获得86次收藏
创作历程
  • 1篇
    2022年
  • 13篇
    2021年
  • 22篇
    2020年
成就勋章
TA的专栏
  • Blink
    2篇
  • 每日一网
    30篇
  • datawhale
    4篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习tensorflow
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【WaterRemind】用Arduino与SSD1306做一款提醒喝水的杯垫(何同学同款)

Introduction看到何同学最新的视频里面出现的办公室标配的提醒喝水的杯垫,感觉很好做,因此就做一个送给女朋友来提醒他按时喝水,项目主要使用了Arduino Nano作为控制器,SSD1306驱动的0.91寸单色OLED作为显示器,屏幕可以显示进度条,以及定制自己想显示的字母或者bmp图片。具体演示效果如下图所示(外壳还没打印好,稍后更上成品图)。Method硬件硬件很简单,具体清单如下Arduino nano v3.00.91寸Oled SSD1306有源蜂鸣器红外反射传感器锂电
原创
发布博客 2022.02.16 ·
3296 阅读 ·
9 点赞 ·
8 评论 ·
30 收藏

(太累了慢点写)【NoteTimer】一款具有网络留言板功能的时钟

摘要本项目制作了一款以网络为媒介进行跨区域留言的时钟,可以送给你需要关心的人来提醒他记得吃药吃饭上厕所,在具有网络留言板功能的同时,还可以作为网络自动校时的时钟,为您的吃药吃饭上厕所提供准确的时间参考。下图为成品的时间功能下图为留言功能硬件设计ESP8266为了实现Notetimer的联网功能,本项目选择一款较为成熟且便宜的模块ESP8266系列中的ESP-01模块,pdd价格为7.8每块。由于此模块为串口通讯,因此需要配合串口烧录器进行程序烧写,烧录器pdd价格为9.4元。pddyyds
原创
发布博客 2021.09.07 ·
328 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【每日一网】Day30:DSSD(Deconvolutional Single Shot Detector)简单理解

DSSD:Deconvolutional Single Shot Detector算法背景本文的主要贡献在于将上下文索引和残差网络加到了SSD算法中,然后在反卷积层上增加SSD和residual-101,以在目标检测中提高对小目标的准确性。DSSD将SSD的VGG网络用Resnet-101进行了替换,在分类回归之前引入了残差模块,在SSD添加的辅助卷积层后又添加了反卷积层形成“宽 - 窄 - 宽”的“沙漏”结构。DSSD相比SSD的一个最大的提升在于对小目标的检测度上DSSD有了很大的提升,文章的最后部
原创
发布博客 2021.01.16 ·
481 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【每日一网】Day29:NoC:Object Detection Networks on Convolutional Feature Maps简单理解

Object Detection Networks on Convolutional Feature Maps算法背景大多数目标检测器包含两个重要的组件,分别为特征提取器和分类器。传统的目标检测方法的特征提取器是手工设计的,例如HOG,分类器一般是svm等。另一种目标检测策略是使用卷积层提取与区域无关的特征,然后按区域划分的多层感知机进行分类,本文中,作者从功能之外的分类器的角度对目标检测系统进行深入研究。专注于在与区域无关的贡献卷积特征之上,并称为NoC网络结构卷积特征图由共享卷积层生成,一个特
原创
发布博客 2021.01.15 ·
443 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

【每日一网】Day28:DeepID-Net简单理解

DeepID-Net算法背景论文中介绍了一种基于形变部件的卷积神经网络,采用一个新的形变约束池化层(def-pooling)模拟具有几何约束和惩罚的对象部分的变形。这意味着,除了直接检测整个对象外,检测可以帮助检测整个对象的对象部分也是至关重要的,作者将该模型应用在人脸识别上,相应的对deepid模型进行了一些更改和优化,更新后的两个版本分别称为deepid 2和deepid3算法流程从图中可以看出deepid框架和rcnn有很多相似之处。红色文本突出显示了RCNN中不存在的步骤,初始化propo
原创
发布博客 2021.01.12 ·
311 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

【每日一网】Day27:PVANet简单理解

PVENet算法背景PVAnet是RCNN系列的改进版,基于Faster-RCNN进行改进,Faster-RCNN基础网络可以使用ZF,VGG,Resnet等,但是精度与速度难以同时提高,PVAnet的含义为Performance Vs Accuracy,意思是加速模型并且不损失精度,该网络使用了C.Relu,inception,HyperNet(相关介绍可以看我之前的文章),residual模块等trick网络结构网络结构如图网络参数如图C.ReLuC.ReLU的作者观察基础网络卷积层参
原创
发布博客 2021.01.11 ·
301 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【每日一网】Day26:YOLT简单理解

YOLT算法背景这篇文章做的只卫星图的目标检测,在yolov2的基础上做改进得到YOLT,因为卫星图的目标检测和常见的目标检测场景区别比较大,卫星图的尺寸本身就很大,其次是目标尺寸非常小且常常聚集在一起,因此YOLT算法整体上是解决卫星图这种特殊场景里的目标检测,对于通用目标检测算法中小目标的检测也有一定的借鉴意义,同时这篇文章也列举了一些在实际项目中对效果提升有所帮助的点,也值得借鉴小目标检测难点一、卫星图目标的尺寸、方向多样,因为卫星图是从空中拍摄的,所以角度不固定,像船、汽车的方向都可能和常
原创
发布博客 2021.01.10 ·
549 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

【每日一网】Day25:R-FCN简单理解

R-FCN算法背景作者提出了基于区域的全卷积神经网络,与之前的基于区域的检测器,论文的基于区域的检测器利用的是全卷积网络,并且几乎所有的计算都在整张图片上共享。论文主要解决了”分类网络的位置不敏感性“和“检测网络的位置敏感性”之间的矛盾,在提升精度的同时利用“”位置敏感得分图“,提升了检测速度。Faster RCNN的是首个利用CNN来完成proposal的预测的,faster RCNN的思想可以分为两个部分,第一个部分是直接用普通的分类网络的卷积层来提取共享特征,然后一个roi pooling层在
原创
发布博客 2021.01.08 ·
308 阅读 ·
2 点赞 ·
3 评论 ·
1 收藏

【每日一网】Day24:MS-CNN简单理解

MS CNN算法背景本文提出了一种多尺度的神经网络,用于快速的多尺度目标检测,作者将Faster RCNN进行多尺度化,从而提升了对小目标检测效果,在自然图像中,目标可以以不同的比例和大小出现,如图中黄色边看所示,单个的 感受野(如阴影区域)无法匹配目标的可变性。对于小物体,尤其是图的中心区域的物体,检测性能往往特别差算法原理作者提出了一种多尺度的CNN,该网络有两个子网络组成,分别用于提出Region proposal和精确的检测目标,为了改善目标大小和对应的感受野之间的不一致,使用多个输出层执
原创
发布博客 2021.01.07 ·
894 阅读 ·
4 点赞 ·
2 评论 ·
3 收藏

【每日一网】Day23:SpineNet简单理解

SpineNet算法背景在过去的一段时间内,CNN的结构设计取得了巨大的进展,更宽更深的网络接替而来,但是CNN的结构从发明以来并未有过改善,都遵循着分辨率单调递减的规则,尽管这种尺度递减的架构设计准则在分类任务中取得了巨大的成功,但是这种设计规则真的适合于目标检测这种同时进行定位和分类的任务吗,针对这种问题,谷歌提出了一种尺度排列网络,它具有以下特征:1、中间特征的尺度可以随时提升或者下降,因此模型可以随着深度的增加而保持空间信息;2、特征图之间的连接可以跨尺度以促进多尺度特征融合;为了避免过
原创
发布博客 2021.01.06 ·
291 阅读 ·
2 点赞 ·
1 评论 ·
1 收藏

【每日一网】Day22:Crafting GBD-Net for Object Detection简单理解

GBD-Net明天考试今天简单理解理解吧算法背景物体检测中,不同大小和分辨率的多个proposal的特征细节在进行分类的时候是互补的,来自这些proposal的上下文特征的整合是目标检测中的基本问题,在本文中,作者提出了一种门控双向神经网络(GBD网络),用于在特征学习和特征提取的过程中在来自不同proposal的特征之间传递信息。这种信息传递可以通过两个方向上相邻的proposal之间的卷积来实现,并且可以在不同层之中进行。算法原理在不同分辨率的proposal之间根据不同的图像实例来控制传递
原创
发布博客 2021.01.04 ·
1315 阅读 ·
1 点赞 ·
2 评论 ·
3 收藏

【每日一网】Day21:SSD简单理解

SSD:Single Shot MultiBox Detector终于开始 one-stage了算法背景SSD是作者在ECCV 2016上发表的论文,对于输入尺寸300x300的网络是哟个titan x在voc2007测试集上达到74.3%mAP以及59FPS,对于512x512的网络,达到了76.9%mAP,超越当时最强的Fast RCNN网络结构SDD采用VGG16作为基础模型,然后再VGG16的基础上新增了卷积层来获得更多的特征图以用于检测。分别将VGG16的全链接层fc6和fc7转换成3
原创
发布博客 2021.01.03 ·
377 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

【每日一网】Day20:A MultiPath Network for Object Detection(MPN)简单理解

A MultiPath Network for Object Detection算法背景作者改进了目标检测的方法,相比ss算法的fast RCNN,将实验效果进一步提升了66%,在小物体上提高了4倍。主要进行了如下改进1、使用跨层链接融合了多层的信息2、使用foveal structure考虑了物体的上下文信息3、使用积分loss函数,提高了位置的精准度算法流程传统目标检测的主要流程是,提取Region proposal,利用cnn进行proposal的分类和边界框回归。本文也沿袭了这一个过程
原创
发布博客 2021.01.02 ·
324 阅读 ·
3 点赞 ·
0 评论 ·
1 收藏

【每日一网】Day19:CRAFT简单理解

CRAFT算法背景在对象分类中,任务是需要在对象之间进行分类,但实际上在RCNN中,它变成了对象类别和背景之间的分类,许多背景样本存在着介于目标和背景之间的特征,导致很多模糊的对象类别之间会产生误报的情况(例如将树分类为盆栽)算法结构目标检测任务通常分为两个子任务:产生proposal以及将proposal分类,在本文中,作者将两个子任务进一步细分,分别提高精度,达到高精确率的目的:级联的proposal生成结构理想的proposal生成器应该产生尽量少的proposal,并且能尽量多的覆盖更
原创
发布博客 2021.01.01 ·
355 阅读 ·
2 点赞 ·
1 评论 ·
2 收藏

【每日一网】Day18:OHEM简单理解

OHEM算法背景作者提出了一种困难负样本挖掘的方法,困难负样本是指模型难以区分的负样本,也就是容易将负样本当成正样本的那些样本。例如,当roi中没有目标,全是背景的时候,这时候分类器就很容易正确分类成背景,这就是“容易负样本”。如果roi中有一半是目标,但是标签仍然是背景,这个时候分类器就容易把它当作成正样本,这就是困难负样本,因此需要多找一些困难负样本加入负样本集,进行训练。OHEM网络结构OHEM的基准算法是fast rcnn,目的就是对其进行一点改动就可以大幅度提高性能,网络结构如下所示图
原创
发布博客 2020.12.31 ·
1685 阅读 ·
3 点赞 ·
2 评论 ·
4 收藏

【每日一网】Day17:HyperNet简单理解

HyperNet算法背景HyperNet是2016年清华提出的优秀的Faster-RCNN变种。HyperNet主要改进在于集合了多层的特征图,得到多尺度的超特征(Hyper Feature),相比与Faster-RCNN,HyperNet更擅长处理小物体,在高IOU时更有优势,mAP提高3.1%。但多尺度也必然降低速度。其快速模型HyperNet-SP速度与Faster-RCNN相同,VOC上mAP仅提高1.6%。但注意到其应用的跳层特征(skip layer feature)在处理小物体检测中已经在
原创
发布博客 2020.12.30 ·
1916 阅读 ·
6 点赞 ·
0 评论 ·
4 收藏

【每日一网】Day16:Inside-Outside Net(ION)讲解

Inside-Outside Net算法背景图像的上下文信息在人类和计算机视觉中起重要的作用,为了收集上下文信息,论文使用RNN来在水平和垂直方向传递空间变化的上下文信息,并且使用了跨层连接,绕过中间层,将不同层的特征进行组合。网络结构每次传播,VGG16会从图片中提取特征图并且生成2000个Region proposal。对于每个Region proposal,网络使用ROI pooling提取固定尺寸,每个特征经过L2归一化,concatenate, 缩放和降维(1x1卷积)之后产生一个512
原创
发布博客 2020.12.29 ·
2550 阅读 ·
5 点赞 ·
3 评论 ·
2 收藏

【每日一网】Day15:YOLOV3讲解

YOLOV3backboneyolov3使用了darknet53作为网络的backbone,网络结构中有53个卷积层,网络中没有pooling层残差结构backbone中对应的一个方块为一个残差结构多尺度网络通过kmeans聚类算法得到三种anchor尺度,分别为(10x13),(16x30),(33x23),(30x61),(62x45),(59x119),(116x90),(156x198),(373x326)网络结构loss置信度损失:类别损失:定位损失:
原创
发布博客 2020.12.28 ·
150 阅读 ·
4 点赞 ·
0 评论 ·
2 收藏

【每日一网】Day14:YOLO9000(YOLOV2)详解

YOLOV2算法改进yolo v2做了各种尝试1、增加BN层2、更高分辨率的分类器3、基于anchor的边界框预测4、使用kmeans聚类来计算anchor5、限制anchor坐标位置6、将高层特征与低层特征进行特征融合7、模型结构PassThrough Layer(W/2,H/2,Cx4)...
原创
发布博客 2020.12.27 ·
144 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

【每日一网】Day13:AZNet详解

AZNet算法背景传统的目标检测的方法需要假设一组与目标类别无关region proposal,然后输入检测器,检测器再给每个proposal进行分类,region proposal的作用就是通过限制需要由探测器评估的区域的数量来降低复杂性。然而,随着最近引入的能够共享卷积特征点技术,传统的region proposal算法比如selective search和EdgeBox算法成为检测pipeline的瓶颈。算法思想AZNet利用了自适应的搜索策略,算法不是先确定一组anchor,而是从整张图像开
原创
发布博客 2020.12.26 ·
419 阅读 ·
4 点赞 ·
1 评论 ·
3 收藏
加载更多