数据仓库建模

本文介绍了数据仓库建模的重要性,数据模型的定义,特别是多维数据模型,如星型模型和雪花型模型。星型模型强调数据冗余以提高查询效率,适合指标分析;雪花型模型通过规范化减少冗余,适合维度分析,但可能影响性能。数据模型建立涉及业务模型、领域模型、逻辑建模和物理建模等步骤。
摘要由CSDN通过智能技术生成

1、为什么需要为数据仓库建模

进行全面的业务梳理时,我们可以通过业务模型,全面了解业务结构及运行情况,按照业务特定的规律分门别类和程序化,改进业务的流程。

通过模型的建设,我们可以很清晰的看到数据之间内在的关联关系,从而建立起全方位的数据视角,并消灭信息孤岛和数据差异化的问题,进而保证数据的一致性

模型可以很好的帮助我们分离出底层技术的实现上层业务的展现,当上层业务发生变化时,通过数据模型,底层的技术实现可以适应的了业务的变动,进而解决数据库的灵活性

在模型中可以很好的看出开发人员和业务人员之间的系统建设范围的界定,及未来的规划。

2、什么是数据模型

数据模型数据关系的一种映射, 就是将业务之间的关系,用模型图形化的描绘出来,而不再是脑海的一个模糊的关系。

在设计数据仓库模型和架构时,我们需要懂具体的技术,也需要了解行业的知识和经验来帮助我们对业务进行抽象、处理,进而生成各个阶段的模型。

数据模型架构

在大体上,我们将数据模型分为5大块。

系统记录域:数据仓库业务数据存储区,保证数据的一致性。

内部管理域:用于内部管理的元数据,统一的元数据管理。

汇总域:这里的数据来自系统记录域的汇总,保证分析域的主题分析性能,满足部分报表查询。

分析域:各个业务部分的具体主题业务分析,可以单独存储在相应的数据集市中。

反馈域:用于相应的前端的反馈数据,视业务的需要设置这个域。

3、多维数据模型

  多维数据模型是为了满足用户从多角度多层次进行数据查询和分析的需要而建立起来的基于事实和维的数据库模型,其基本的应用是为了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值