深度学习笔记(2)

线性回归

1. 线性回归

(1) 解决回归问题,建立系统,解决:将向量X作为输入,向量Y作为预测输出

①  输出是输入的线性函数   y·=WX(W是参数)

② 系统通过参数W控制行为

③ W是是决定每个特征如何影响预测的权重,与特征值具有相关性

(2) 度量P

① 评价模型,而非训练模型

② 组件:测试集

③ 方法:

1) 均方误差:

a. 预测值和目标值间的欧式距离增加,表示误差增加

(3) 使用线性回归训练模型?

① 通过减少 均方误差 以改进 权重w

(4) 线性回归模型:

① y=w[T] x+b

 


 

容量、过拟合和欠拟合

1.  泛化:在未观测的输入上表现良好的能力

2. 误差:

(1) 训练误差

(2) 泛化误差/测试误差

(3) 通过最小训练误差训练模型

3. 统计学习理论

(1) 如何提高两集数据的质量?

① 在数据生成过程中,采用 独立同分布假设

② 采用这种方式生成数据  潜在分布 称为 数据生成分布

③ 训练集和测试集有什么联系?

1) 训练误差期望和测试误差期望相同

 

4. 什么决定机器学习算法效果?

(1) 降低训练误差

(2) 缩小寻览误差和测试误差的差距

5. 机器学习两大挑战:

(1) 欠拟合:不能在训练集上获得足够低的误差

(2) 过拟合:训练集和测试集的误差差距太大

(3) 通过 容量 调整拟合函数的能力,通过假设空间控制容量

6. 容量:

(1) 缓和 过拟合 和欠拟合 的方法

(2) 表示容量:从哪些函数族中选择函数,被称为xxx

(3) 有效容量:限制因素决定有效容量

7. 提高模型泛化能力方法:

(1) 奥卡姆剃刀原理:如无必要,勿增实体

(2) 使用统计学习理论量化模型容量

① 结论:

1) 训练误差和泛化误差间差异上界随样本容量上升而上升,

2) 随着训练样本增多而下降

(3) 通常,泛化误差是关于模型的U函数

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值