题目描述:
机器人的行动范围 地上有一个m行和n列的方格。一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子。 例如,当k为18时,机器人能够进入方格(35,37),因为3+5+3+7 = 18。但是,它不能进入方格(35,38),因为3+5+3+8 = 19。请问该机器人能够达到多少个格子?
分析:
1、行坐标和列坐标的数位之和怎么求,应该封装成一个函数吧。
2、最后的符合要求的格子怎么统计。
下边的函数中还有一个我觉得用的挺好的地方,把所有的格子都变成False。
# 回溯法。但是我认为叫回溯不适合,这实际上就是遍历,哎,其实也就是书中所说的回溯。。
class Solution:
def movingCount(self, threshold, rows, cols): # 主函数,threshold是k值。
visited = [[False]*cols for i in range(rows)] # 把visit全部置false
def get_sum(x,y): # 行坐标和列坐标的数位之和
return sum(list(map(int,str(x)+str(y))))
def movingcode(threshold,rows,cols,i,j): # 功能:如果小于k值,就置为True。接着找四周
if get_sum(i,j)<=threshold: # 如果<=k,就执行;否则没有动作
visited[i][j] = True
for x,y in ((i-1,j),(i+1,j),(i,j-1),(i,j+1)): # 上下左右遍历
if 0<=x<rows and 0<=y<cols and visited[x][y]==False: # 如果当前位置是False
movingcode(threshold,rows,cols,x,y)
movingcode(threshold,rows,cols,0,0)
return sum(sum(visited,[])) # 巧用sum