Spark算子:RDD行动Action操作(2)–take、top、takeOrdered



take

def take(num: Int): Array[T]

take用于获取RDD中从0到num-1下标的元素,不排序。

 
 
  1. scala> var rdd1 = sc.makeRDD(Seq(10, 4, 2, 12, 3))
  2. rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[40] at makeRDD at :21
  3.  
  4. scala> rdd1.take(1)
  5. res0: Array[Int] = Array(10)
  6.  
  7. scala> rdd1.take(2)
  8. res1: Array[Int] = Array(10, 4)
  9.  

top

def top(num: Int)(implicit ord: Ordering[T]): Array[T]

top函数用于从RDD中,按照默认(降序)或者指定的排序规则,返回前num个元素。

 
 
  1. scala> var rdd1 = sc.makeRDD(Seq(10, 4, 2, 12, 3))
  2. rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[40] at makeRDD at :21
  3.  
  4. scala> rdd1.top(1)
  5. res2: Array[Int] = Array(12)
  6.  
  7. scala> rdd1.top(2)
  8. res3: Array[Int] = Array(12, 10)
  9.  
  10. //指定排序规则
  11. scala> implicit val myOrd = implicitly[Ordering[Int]].reverse
  12. myOrd: scala.math.Ordering[Int] = scala.math.Ordering$$anon$4@767499ef
  13.  
  14. scala> rdd1.top(1)
  15. res4: Array[Int] = Array(2)
  16.  
  17. scala> rdd1.top(2)
  18. res5: Array[Int] = Array(2, 3)
  19.  

takeOrdered

def takeOrdered(num: Int)(implicit ord: Ordering[T]): Array[T]

takeOrdered和top类似,只不过以和top相反的顺序返回元素。

 
 
  1. scala> var rdd1 = sc.makeRDD(Seq(10, 4, 2, 12, 3))
  2. rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[40] at makeRDD at :21
  3.  
  4. scala> rdd1.top(1)
  5. res4: Array[Int] = Array(2)
  6.  
  7. scala> rdd1.top(2)
  8. res5: Array[Int] = Array(2, 3)
  9.  
  10. scala> rdd1.takeOrdered(1)
  11. res6: Array[Int] = Array(12)
  12.  
  13. scala> rdd1.takeOrdered(2)
  14. res7: Array[Int] = Array(12, 10)
  15.  

更多关于Spark算子的介绍,可参考 Spark算子系列文章 :

http://lxw1234.com/archives/2015/07/363.htm


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值