人工智能
文章平均质量分 83
AI应用前沿
深耕AI运营
展开
-
资源|计算机视觉、机器学习、深度学习相关开源代码集合归纳总结
欢迎分享本文,转载请保留出处目录如下:1.特征提取Feature Extraction;2. 图像分割Image Segmentation; 3. 目标检测Object Detection;4. 显著性检测Saliency Detection;5. 图像分类、聚类Image Classification, Clustering;6. 抠图Image Matting;7. 目标跟踪Object Tr...原创 2018-04-01 23:07:16 · 371 阅读 · 0 评论 -
2018年中国人工智能独角兽和准独角兽榜单发布
人工智能的独角兽企业7家(估值10亿美元+)原创 2018-03-28 14:50:54 · 2280 阅读 · 0 评论 -
机器学习:GMM高斯混合模型
1、统计学模型统计学习的模型有两种,一种是概率模型,一种是非概率模型。所谓概率模型,就是指我们要学习的模型的形式是P(Y|X),这样在分类的过程中,我们通过未知数据X可以获得Y 取值的一个概率分布,也就是训练后模型得到的输出不是一个具体的值,而是一系列值的概率(对应于分类问题来说,就是对应于各个不同的类的概率),然后我们 可以选取概率最大的那个类作为判决对象(算软分类soft assignment...原创 2018-03-28 15:21:44 · 1036 阅读 · 0 评论 -
《未来简史》作者赫拉利和李开复:这些职业将被人工智能取代
最近看了李开复以及《未来简史》的作者赫拉利的演讲视频,他们都谈到一些职业将被人工智能所取代。现在我把演讲精彩内容整理如下:一、李开复符合5秒准则的职业可能被取代AI时代的到来,50%的人可能失业,被认为聪明的人应该赶快解决这个问题。我有一个“五秒钟准则”,即一项本来由人从事的工作,如果可以在5秒钟以内的时间里,对工作中需要思考和决策的问题作出相应决定,那么,这项工作就有非常大的可能被人工智能技术全...原创 2018-03-28 16:49:58 · 979 阅读 · 0 评论 -
2.4 吴恩达《神经网络与深度学习》——梯度下降法
【上节回顾】在上一讲里,我们学习了logistic回归模型,也知道了损失函数。损失函数,是衡量单一训练样例的效果。你还知道了成本函数,成本函数用于衡量参数w和b的效果,在全部训练集上来衡量。下面我们讨论如何使用梯度下降法,来训练或学习训练集上的参数w和b。回顾一下,这里是熟悉的logistic回归算法。第二行是成本函数J,成本函数J是参数w和b的函数,它被定义为平均值,即1/m的损失函数之和。损失...原创 2018-04-03 21:01:27 · 2516 阅读 · 0 评论 -
2.5 《神经网络与深度学习》课程系列之导数
在这节课里,我想让你对微积分和导数有直观的理解,或许你认为自从大学后,你再也没有接触微积分,这取决于你什么时候毕业,也许有一段时间了。如果你顾虑到这点,请不要担心,你并不需要非常深入理解微积分,就能高效应用神经网络和深度学习。我在这里画了一个函数,f(a)=3a,它是一条直线,直观的解释导数。假定a=2,那么f(a)等于a的3倍,等于6。也就是说,如果a=2,那么函数f(a)=6,。我们稍微改变a...原创 2018-04-03 21:59:01 · 325 阅读 · 0 评论 -
教程|深度学习与神经网络相关更多导数的例子
在这一讲中,我将给出一个更加复杂的例子,在这些不同的例子中,函数在不同点出的斜率是不一样的。先来举一个例子:我在这里画一个函数f(a)=a的平方,在a=2的点上,a的平方等于4。让我们稍稍往右推进一点点,现在a=2.001,而f(a)即a的平方,约为4.004。但是。如果使用计算机算的话,这个准确的值应该为4.004001。为了简便起见,省略了后面的部分。这里想表达的是,当a=2时,f(a)=4。...原创 2018-04-05 10:33:47 · 549 阅读 · 0 评论 -
ATN项目(智能矩阵Atmatrix)是否能做到人工智能界的桥梁,从而改变世界?
Atmatrix智能矩阵:结合区块链和人工智能打造人工智能共享平台一、项目的起源人工智能现在是一个很分裂的状态,Google有Alpha Go,百度有百度AI,腾讯也在布局自己的AI Lab,巨头们纷纷扎根人工智能领域,但是大家仿佛都在重复造车轮,每一家的AI功能都不一样,有一定的局限,Alpha Go现在只擅长下围棋,不能预测天气和告诉你今天适合吃什么,应用场景有限。怎么样降低人工智能的使用...原创 2018-03-27 21:12:10 · 1556 阅读 · 0 评论 -
【重磅】清华大学法学院教授何海波:以数据推动法治(视频+PPT)
【重磅】清华大学法学院教授何海波:以数据推动法治(视频+PPT)本讲座选自清华大学法学院教授何海波于2018年3月23日在RONG系列——“大数据与司法”专场论坛上所做的题为《以数据推动法治》的演讲。以下为讲座现场视频,视频时长约20分钟,wifi用户及流量土豪请随意,图文版回顾见下文:https://v.qq.com/x/page/d0613u5evr6.html 清华大学法学院教授何海...原创 2018-03-27 21:23:43 · 1222 阅读 · 0 评论 -
Pycharm及python安装详细教程
首先我们来安装python1、首先进入网站下载:点击打开链接(或自己输入网址https://www.python.org/downloads/),进入之后如下图,选择图中红色圈中区域进行下载。2、下载完成后如下图所示3、双击exe文件进行安装,如下图,并按照圈中区域进行设置,切记要勾选打钩的框,然后再点击Customize installation进入到下一步:4、对于上图中,可以通过Browse...转载 2018-03-27 22:07:02 · 5746 阅读 · 2 评论 -
初学者如何从零开始学习人工智能?看完你就懂了
此文是想要进入人工智能这个领域、但不知道从哪里开始的初学者最佳的学习资源列表。一、机器学习有关机器学习领域的最佳介绍,请观看Coursera的Andrew Ng机器学习课程。 它解释了基本概念,并让你很好地理解最重要的算法。有关ML算法的简要概述,查看这个TutsPlus课程“Machine Learning Distilled”。“Programming Collective Intellige...原创 2018-03-27 22:10:57 · 9718 阅读 · 1 评论 -
【全网独家】吴恩达的新书 《Machine Learning Yearning》2、如何使用这本书来帮助你的团队
2、如何使用这本书来帮助你的团队读完这本书,你将对如何制定机器学习项目技术方向有一个深刻的理解。但是你的队友可能不明白你为什么要推荐一个特定的方向。也许您希望您的团队定义一个单值的评估指标,但是他们并不信服。你如何说服他们?这就是为什么我把章节写得很短:这样你就可以打印出来,让你的队友阅读你需要他们知道的1-2页。面对几个不同的选择,在优先排序上的一些改变可能会对你团队生产力产生巨大的影响。通过帮...翻译 2018-04-06 23:04:06 · 449 阅读 · 0 评论 -
【全网独家】吴恩达的新书 《Machine Learning Yearning》中文编译版-----3、先决条件和符号
3、先决条件和符号如果你学过机器学习课程,比如Coursera上的机器学习MOOC,或者你有使用过监督学习的经验,你就能理解这篇课文。我假设你熟悉监督学习:使用标记的训练样例(x, y)学习一个从x映射到y的函数。监督式学习包括线性回归(linear regression),对数几率回归(也叫逻辑回归,logistic regression)和神经网络(neural networks)。机器学习的...翻译 2018-04-06 23:06:19 · 295 阅读 · 0 评论 -
【全网独家】搞人工智能必看的前沿技术——6、你的开发集和测试集应该来自同一分布
6、你的开发集和测试集应该来自同一分布根据你的市场,您将你的猫app的图片数据分为四个区域:(i)美国,(ii)中国,(iii)印度和(iv)其他地区。要生成一个开发集和一个测试集,我们随机地分配两个地区的数据到开发集,另外两个到测试集,对吗?比如来自美国和印度的数据在开发集,中国和其他地区的在测试集。一旦你这样定义了开发集和测试集,你的团队将专注于提高开发集的表现性能。因此,开发集应该反映你真正...原创 2018-04-07 14:24:38 · 710 阅读 · 0 评论 -
对于想进入AI领域的人,谈几点建议?
对于想进入AI领域的人,谈几点建议?LeCun:这个领域和我刚进入的时候,已经是两个完全不同的世界了。我认为现在有一点非常好,人们想在某种程度上参与进来很容易了,工具很多、很好用,比如TensorFlow、PyTorch等等。你只需要一台不算贵的电脑,坐在卧室里,就能训练你的卷积神经网络、循环神经网络来做任何事情了。你也可以用线上的学习资料学很多东西,也不是很麻烦。所以现在连高中生都在搞神经网络了...原创 2018-04-07 14:07:54 · 901 阅读 · 0 评论 -
【全网独家】吴恩达的新书 《Machine Learning Yearning》1、为什么需要机器学习策略?
1、为什么需要机器学习策略?机器学习是无数重要应用程序的基础,包括网页搜索,反垃圾邮件,语音识别,产品推荐等。如果您或您的团队正在开发一个机器学习的应用程序,并且您希望取得快速的进步。这本书将帮助你实现。例如:建立一个谁别含有猫咪图片的创业公司。假设你正在建立一个新公司,它将为爱猫人士提供源源不断的猫图片。你使用神经网络建立一个计算机视觉系统来检测图片中的猫。但不幸的是,你的学习算法的准确性还不够...翻译 2018-04-06 23:02:54 · 223 阅读 · 0 评论 -
【全网独家】吴恩达的新书 《Machine Learning Yearning》中文编译版——1~12章
目录1、为什么需要机器学习策略?机器学习是无数重要应用程序的基础,包括网页搜索,反垃圾邮件,语音识别,产品推荐等。如果您或您的团队正在开发一个机器学习的应用程序,并且您希望取得快速的进步。这本书将帮助你实现。例如:建立一个谁别含有猫咪图片的创业公司。假设你正在建立一个新公司,它将为爱猫人士提供源源不断的猫图片。你使用神经网络建立一个计算机视觉系统来检测图片中的猫。但不幸的是,你的学习算法的准确性还...原创 2018-04-06 22:42:09 · 1244 阅读 · 0 评论 -
吴恩达《神经网络与深度学习》课程笔记(1)-- 神经网络基础之Python与向量化
上节课我们主要介绍了逻辑回归,以输出概率的形式来处理二分类问题。我们介绍了逻辑回归的Cost function表达式,并使用梯度下降算法来计算最小化Cost function时对应的参数w和b。通过计算图的方式来讲述了神经网络的正向传播和反向传播两个过程。本节课我们将来探讨Python和向量化的相关知识。——回顾1Vectorization深度学习算法中,数据量很大,在程序中应该尽量减少使用loo...原创 2018-04-13 00:48:24 · 662 阅读 · 0 评论 -
今日头条推荐算法详解(PDF下载)
源 | AI研习社 编辑 | 昱良内容较长点击阅读原文即可下载今日头条资深算法架构师曹欢欢:本次分享将主要介绍今日头条推荐系统概览以及内容分析、用户标签、评估分析,内容安全等原理。一、系统概览推荐系统,如果用形式化的方式去描述实际上是拟合一个用户对内容满意度的函数,这个函数需要输入三个维度的变量。第一个维度是内容。头条现在已经是一个综合内容平台,图文、视频、UGC小视频、问答、微头条,每种内...转载 2018-04-05 22:45:13 · 3698 阅读 · 0 评论 -
阿里巴巴年度技术总结 - 人工智能在搜索的应用和实践
欢迎分享本文,转载请保留出处点击关注,获取最新AI干货转自:AI 科技评论AI 科技评论按:本文作者为阿里巴巴搜索事业部总监欧文武,经阿里巴巴授权发布。以深度学习为代表的人工智能在图像、语音和 NLP 领域带来了突破性的进展,在信息检索和个性化领域近几年也有不少公开文献,比如 wide & deep 实现了深度模型和浅层模型的结合,dssm 用于计算语义相关性,deepfm 增加了特征组合...转载 2018-04-05 22:47:13 · 1296 阅读 · 0 评论 -
只需修改一个像素,让神经网络连猫都认不出 | 论文+代码
夏乙 编译整理量子位 出品 | 公众号 QbitAI想骗过神经网络,让它认错图像,需要对图像做多少修改?一个像素就够了。一项来自日本的研究表明,改动图片上的一个像素,就能让神经网络认错图,甚至还可以诱导它返回特定的结果。研究由日本九州大学的Jiawei Su、Danilo Vasconcellos Vargas和Kouichi Sakurai三人共同完成,他们不仅写论文详细介绍了这项改一个像素就骗...转载 2018-04-05 23:26:31 · 515 阅读 · 0 评论 -
推荐 10 个饱受好评且功能独特的开源人工智能项目。
欢迎分享本文,转载请保留出处赠人玫瑰,手留余香喜欢就关注我吧关于人工智能的项目,相信大家都看过或者用过不少了,但它们的大多数看上去都十分“高大上”,让人感觉要掌握他们犹如习屠龙之术一样。事实上,有很多关于人工智能的项目还是十分实用的,而且用途还十分有趣,下面就简单为大家盘点 10 个功能独特的开源人工智能项目。STYLE2PAINTS:强大的为线稿上色的 AI项目地址:https://www.os...原创 2018-04-06 14:55:16 · 609 阅读 · 0 评论 -
数字化迁徙最核心的是AI和区块链
原创 2018-04-06 16:56:17 · 446 阅读 · 0 评论 -
【重磅】世界区块链组织首席科学家白硕:区块链技术与数据隐私讲座
【重磅】世界区块链组织首席科学家白硕:区块链技术与数据隐私讲座本讲座选自世界区块链组织首席科学家白硕于2018年3月29日在清华大数据“应用·创新”系列讲座上所做的题为《区块链技术与数据隐私》的演讲。演讲全文:白硕:非常荣幸回到母校,跟大家分享区块链这样一个非常热的话题。区块链在前面,隐私在后面,但是大家都知道中国人总是喜欢把修饰语放在前面,把中心语放在后面。隐私应该是信息发达到一定程度,中国人才...原创 2018-04-01 22:42:45 · 1220 阅读 · 0 评论 -
深度强化训练:从像素点发出的Pong
这是一篇报道Reinforcement Learnning(RL)的博客。RL是很热门的!你可能已经注意到,电脑现在可以自动学习玩ATARI游戏(从原始的 pixelsi游戏中!),他们模拟的四足动物击败了世界冠军,学习了跑步和跳跃。而且机器人正在学习如何执行复杂的操作任务,而这些复杂的操作是违反了明确的程序的。在RL研究框架下,所有这些进步都是在过去的一年中对RL产生了兴趣。我通过Richard...翻译 2018-02-26 11:03:42 · 583 阅读 · 0 评论 -
第2章 k-近邻算法
欢迎分享本文,转载请保留出处点击关注,获取最新AI干货KNN 概述k-近邻(kNN, k-NearestNeighbor)算法是一种基本分类与回归方法,我们这里只讨论分类问题中的 k-近邻算法。k 近邻算法的输入为实例的特征向量,对应于特征空间的点;输出为实例的类别,可以取多类。k 近邻算法假设给定一个训练数据集,其中的实例类别已定。分类时,对新的实例,根据其 k 个最近邻的训练实例的类别,通过多...原创 2018-03-24 13:03:18 · 2789 阅读 · 1 评论 -
第3章 决策树
决策树 概述决策树(Decision Tree)算法主要用来处理分类问题,是最经常使用的数据挖掘算法之一。决策树 场景一个叫做 "二十个问题" 的游戏,游戏的规则很简单:参与游戏的一方在脑海中想某个事物,其他参与者向他提问,只允许提 20 个问题,问题的答案也只能用对或错回答。问问题的人通过推断分解,逐步缩小待猜测事物的范围,最后得到游戏的答案。一个邮件分类系统,大致工作流程如下:首先检测发送邮件...原创 2018-03-24 13:04:52 · 311 阅读 · 0 评论 -
第4章 基于概率论的分类方法:朴素贝叶斯
朴素贝叶斯 概述贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本章首先介绍贝叶斯分类算法的基础——贝叶斯定理。最后,我们通过实例来讨论贝叶斯分类的中最简单的一种: 朴素贝叶斯分类。贝叶斯理论 & 条件概率贝叶斯理论我们现在有一个数据集,它由两类数据组成,数据分布如下图所示:我们现在用 p1(x,y) 表示数据点 (x,y) 属于类别 1(图中用圆点表示的...原创 2018-03-24 13:07:31 · 474 阅读 · 0 评论 -
第5章 Logistic回归
欢迎分享本文,转载请保留出处点击关注,获取最新AI干货Logistic 回归 概述Logistic 回归虽然名字叫回归,但是它是用来做分类的。其主要思想是: 根据现有数据对分类边界线建立回归公式,以此进行分类。须知概念Sigmoid 函数回归 概念假设现在有一些数据点,我们用一条直线对这些点进行拟合(这条直线称为最佳拟合直线),这个拟合的过程就叫做回归。进而可以得到对这些点的拟合直线方程,那么我们...原创 2018-03-24 13:09:15 · 477 阅读 · 0 评论 -
6、 支持向量机
支持向量机 概述支持向量机(Support Vector Machines, SVM):是一种机器学习算法。 支持向量(Support Vector)就是离分隔超平面最近的那些点。 机(Machine)就是表示一种算法,而不是表示机器。支持向量机 场景要给左右两边的点进行分类明显发现:选择D会比B、C分隔的效果要好很多。支持向量机 原理SVM 工作原理对于上述的苹果和香蕉,我们想象为2种水果类型的...原创 2018-03-24 13:10:51 · 347 阅读 · 0 评论 -
第7章 集成方法、随机森林
欢迎分享本文,转载请保留出处集成方法: ensemble method(元算法: meta algorithm) 概述概念:是对其他算法进行组合的一种形式。通俗来说: 当做重要决定时,大家可能都会考虑吸取多个专家而不只是一个人的意见。 机器学习处理问题时又何尝不是如此? 这就是集成方法背后的思想。集成方法:投票选举(bagging: 自举汇聚法 bootstrap aggregating): 是基...原创 2018-03-25 08:00:25 · 714 阅读 · 0 评论 -
1.3 吴恩达Coursera深度学习课程 DeepLearning.ai 提炼笔记(1-4)-- 为什么深度学习会兴起?
吴恩达Coursera深度学习课程 DeepLearning.ai 提炼笔记(1-4)-- 为什么深度学习会兴起?在深度学习和神经网络背后的基本技术理念,已经有好几十年了。为什么现在才突然流行起来呢?在这节课,来看一下让深度学习流行起来的主要因素。这将帮助你在自己的组织中,发现好机会,来应用这些东西。在过去的几年里,很多人问我,Andrew为什么深度学习突然这么厉害了?一、画个圈我回答的时候,通常...原创 2018-03-25 07:55:38 · 502 阅读 · 0 评论 -
第1章 机器学习基础
机器学习 概述机器学习 是使用计算机来彰显数据背后的真实含义,它为了把无序的数据转换成有用的信息。 1. 海量的数据 2. 获取有用的信息机器学习 场景例如:识别动物猫模式识别(官方标准):人们通过大量的经验,得到结论,从而判断它就是猫。机器学习(数据学习):人们通过阅读进行学习,观察它会叫、小眼睛、两只耳朵、四条腿、一条尾巴,得到结论,从而判断它就是猫。深度学习(深入数据):人们通过深入了...原创 2018-03-24 13:01:31 · 417 阅读 · 1 评论 -
图像分割概述(一)
http://www.cnblogs.com/hjlweilong/p/6119820.html所谓图像分割指的是根据灰度、颜色、纹理和形状等特征把图像划分成若干互不交迭的区域,并使这些特征在同一区域内呈现出相似性,而在不同区域间呈现出明显的差异性。我们先对目前主要的图像分割方法做个概述,后面再对个别方法做详细的了解和学习。1、基于阈值的分割方法 阈值法的基本思想是基于图像的灰度特征来计...转载 2018-03-24 12:57:19 · 2002 阅读 · 1 评论 -
智慧林业落地入口在林业物联网工程
国家林业局《关于推进中国林业物联网发展的指导意见》要求,“实现物联网技术与林业业务高度融合,有力支撑林业资源监管、营造林管理等各类业务。构建起较为完善的林业物联网科技创新、标准规范、安全管理体系,林业智能化水平显著提高,林业建设的实时性、高效性、稳定性和可靠性显著增强,林业现代化水平全面提升。”主要任务 (一)林业资源监管物联网应用。林业资源主要包括森林资源、湿地资源、荒漠资源和野生动植物资源。在...原创 2018-03-22 15:31:50 · 2976 阅读 · 0 评论 -
李开复《人工智能》的学习之路
欢迎分享本文,转载请保留出处点击关注,获取最新AI干货首次听到“机器学习”“深度学习”“人工智能”“python”“C++”“C#”这几个字眼,是从在北京航空航天大学攻读人工智能专业硕士学位的朋友那里了解到的,那时正赶上2018年农历春节准备放假那几天。听完之后,心之神往,立马动身从朝阳区百子湾赶到了北京西单图书大厦,想要一睹一下当今人工智能领域相关著作。刚进大厦的一楼,里面摆满了畅销书,其中李开...原创 2018-03-22 18:35:04 · 3304 阅读 · 0 评论 -
学完吴恩达全部深度学习课程,这有一份课程解读
学完吴恩达全部深度学习课程,这有一份课程解读作者:Ryan Shrott来源:机器之心本文长度为2500字,建议阅读5分钟本文作者是加拿大国家银行首席分析师Ryan Shrott,完成了迄今为止(2017 年 10 月 25 日)吴恩达在 Coursera 上发布的所有深度学习课程,并为我们提供了课程解读。目前 Coursera 上可用的课程中,有三门课非常值得关注:1. 神经网络与深度学习(Ne...转载 2018-03-22 19:03:29 · 1243 阅读 · 0 评论 -
机器学习萌新必学的Top10算法
在机器学习领域里,不存在一种万能的算法可以完美解决所有问题,尤其是像预测建模的监督学习里。【转自搜狐科技】比方说,神经网络不见得比决策树好,同样反过来也不成立。最后的结果是有很多因素在起作用的,比方说数据集的大小以及组成。所以,针对你要解决的问题,最好是尝试多种不同的算法。并借一个测试集来评估不同算法之间的表现,最后选出一个结果最好的。当然,你要选适合解决你问题的算法来尝试。比方说,要打扫房子,你...转载 2018-03-22 20:33:22 · 210 阅读 · 0 评论 -
1.1 深度学习概论第一讲:什么是神经网络?
告读者:开设这门《神经网络和深度学习》课程的初衷是希望可以培养成千上万的人使用人工智能,去解决真实世界的实际问题,创造一个人工智能驱动的社会。今天让我们一起学习深度学习概论第一讲:什么是神经网络?我们从一个房价预测的例子开始。假设有一个六间房屋的数据集,已知房屋的面积,单位是平方英尺或平方米,已知房屋价格,想要找到一个函数,根据房屋面积,预测房价的函数。如果你懂线性回归,你可能会说:好吧!用这些数...原创 2018-03-22 23:27:49 · 446 阅读 · 0 评论 -
1.2 【干货】人工智能实验室主任吴恩达:用神经网络进行监督
【干货】人工智能实验室主任吴恩达:用神经网络进行监督本文选自人工智能实验室主任吴恩达于2017年8月29日在网易云课堂上所讲授的名为《神经网络和深度学习》的课程。图文版回顾见下文:一、监督学习神经网络有时候媒体炒作得很厉害,考虑到它们的使用效果,有些说法还是比较靠谱。事实上,到目前为止,几乎所有有神经网络创造的经济价值,都基于其中一种机器学习,我们称之为监督学习。那是什么意思呢?我们来看一些例子。...原创 2018-03-24 10:31:26 · 428 阅读 · 0 评论