Java数据结构与算法15

快速排序是一种采用分治策略的排序算法,通过一趟排序将数列分成两部分,一部分元素均小于另一部分。排序过程包括选择基准元素、分区、递归排序两部分元素。代码示例展示了Java实现的快速排序过程。尽管在最坏情况下时间复杂度为O(n^2),但平均时间复杂度为O(nlogn),是常用的高效排序算法。
摘要由CSDN通过智能技术生成

第15章 快速排序

15.1 快速排序概念

快速排序(Quick Sort),又称划分交换排序(partition-exchange sort),通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

排序步骤

  • 1、 从数列中挑出一个元素,称为"基准"(pivot),通常选择第一个元素
  • 2、重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区结束之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
  • 3、递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

动图展示

  • 动图1

  • 动图2:


静图分析

15.2 代码实现

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

import java.util.Arrays;public class QuickSort {

    public static void main(String[] args) {

        int[] arr = {30, 40, 60, 10, 20, 50};

        quickSort(arr, 0, arr.length - 1);//        [20, 10, 30, 60, 40, 50]//        [10, 20, 30, 60, 40, 50]//        [10, 20, 30, 60, 40, 50]//        [10, 20, 30, 50, 40, 60]//        [10, 20, 30, 40, 50, 60]//        [10, 20, 30, 40, 50, 60]

    }

    //快速排序

    public static void quickSort(int[] arr, int start, int end) {

        //递归结束的标记

        if (start < end) {

            //把数组中第0个数字作为标准数

            int stard = arr[start];

            //记录需要排序的下标

            int low = start;

            int high = end;

            //循环找比标准数大的数和标准数小的数

            while (low < high) {

                //如果右边数字比标准数大,下标向前移

                while (low < high && arr[high] >= stard) {

                    high--;

                }

                //右边数字比标准数小,使用右边的数替换左边的数

                arr[low] = arr[high];

                //如果左边数字比标准数小

                while (low < high && arr[low] <= stard) {

                    low++;

                }

                //左边数字比标准数大,使用左边的数替换右边的数

                arr[high] = arr[low];

            }

            //把标准数赋给低所在的位置的元素

            arr[low] = stard;

            //打印每次排序后的结果

            System.out.println(Arrays.toString(arr));

            //递归处理所有标准数左边的数字(含标准数)

            quickSort(arr, start, low);

            //递归处理所有标准数右边的数字

            quickSort(arr, low + 1, end);

        }

    }}

15.3 时间复杂度

  • 最优时间复杂度:O(nlogn)
  • 最坏时间复杂度:O(n^2)
  • 稳定性:不稳定

从一开始快速排序平均需要花费O(n log n)时间的描述并不明显。但是不难观察到的是分区运算,数组的元素都会在每次循环中走访过一次,使用O(n)的时间。在使用结合(concatenation)的版本中,这项运算也是O(n)。

在最好的情况,每次我们运行一次分区,我们会把一个数列分为两个几近相等的片段。这个意思就是每次递归调用处理一半大小的数列。因此,在到达大小为一的数列前,我们只要作log n次嵌套的调用。这个意思就是调用树的深度是O(log n)。但是在同一层次结构的两个程序调用中,不会处理到原来数列的相同部分;因此,程序调用的每一层次结构总共全部仅需要O(n)的时间(每个调用有某些共同的额外耗费,但是因为在每一层次结构仅仅只有O(n)个调用,这些被归纳在O(n)系数中)。结果是这个算法仅需使用O(n log n)时间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值