条件概率与似然函数

概率密度与似然函数@TOC

概率密度函数(PDF: Probability Density Function)与似然函数(LF: Likelihood Function)

澄清概率密度函数(pdf)与似然函数(LF)的关系。参数估计中经常用到最大似然估计(Maximum Likelihood Estimation),其表达形式上与概率密度函数相同,但实际意义有所区别。
首先定义两个符号:

  1. f ( x , y ∣ θ ) f(x,y|\pmb{\theta}) f(x,yθθθ): 当参数为 θ \pmb{\theta} θθθ时,样本出现在 ( x , y ) (x,y) (x,y)的概率密度(pdf)
  2. f ( x , y ; θ ) f(x,y;\pmb{\theta}) f(x,y;θθθ): 当观测到 ( x , y ) (x,y) (x,y)这个样本时,参数 θ \pmb{\theta} θθθ的概率密度函数(LF)

概率密度函数( f ( x , y ∣ θ ) f(x,y|\pmb{\theta}) f(x,yθθθ)

以打靶为例。在射击之前,希望知道弹点的分布情况,即需要获得弹点 ( x , y ) (x,y) (x,y)的概率密度函数 f ( x , y ) f(x,y) f(x,y)。值得注意的是,这里的 f ( x , y ) f(x,y) f(x,y)并不是表示弹点落在 ( x , y ) (x,y) (x,y)的概率大小,而是弹点落在区域 Δ \Delta Δ的概率为 P ( ( x , y ) ∈ Δ ) = ∬ ( x , y ) ∈ Δ f ( x , y ) d x d y P((x,y)\in \Delta) =\iint_{(x,y)\in \Delta} f(x,y) \text{d}x\text{d}y P((x,y)Δ)=(x,y)Δf(x,y)dxdy,所以pdf值 f ( x , y ) f(x,y) f(x,y)可能大于1。
打靶示意图
如上图,落在8环内的概率 P ( ∣ ∣ ( x , y ) ∣ ∣ 2 < R 8 ) = ∬ ∣ ∣ ( x , y ) ∣ ∣ 2 < R 8 f ( x , y ) d x d y P(||(x,y)||_2<R_8)=\iint_{||(x,y)||_2<R_8}f(x,y)\text{d}x\text{d}y P((x,y)2<R8)=(x,y)2<R8f(x,y)dxdy,其中 ∣ ∣ ( x , y ) ∣ ∣ 2 ||(x,y)||_2 (x,y)2表示矢量 ( x , y ) (x,y) (x,y)的二范数(即欧氏距离), R 8 R_8 R8表示8环的半径。

有时概率密度函数会由若干参数确定其形态,记为 θ \pmb{\theta} θθθ,以 θ \pmb{\theta} θθθ为参数的概率密度函数写为 f ( x , y ∣ θ ) f(x,y|\pmb{\theta}) f(x,yθθθ)。这里的 θ \pmb{\theta} θθθ是一个给定参数向量。例如打靶问题中,假设弹点服从二维正态分布,参数 θ = ( x 0 , y 0 , σ ) \pmb{\theta} = (x_0,y_0,\sigma) θθθ=(x0,y0,σ),其中 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)表示瞄准的中心的坐标, σ \sigma σ表示打靶的正态分布的标准差(假设 x , y x,y x,y独立同分布)。pdf的表达式就是:
f ( x , y ∣ x 0 , y 0 , σ ) = 1 2 π σ 2 exp ⁡ { − 1 2 σ 2 [ ( x − x 0 ) 2 + ( y − y 0 ) 2 ] } f(x,y|x_0,y_0,\sigma)=\frac{1}{\sqrt{2\pi \sigma^2}}\exp{\left\{-\frac{1}{2\sigma^2}[(x-x_0)^2+(y-y_0)^2]\right\}} f(x,yx0,y0,σ)=2πσ2 1exp{2σ21[(xx0)2+(yy0)2]}
pdf的自变量是 ( x , y ) (x,y) (x,y) θ \pmb{\theta} θθθ是参数集合,针对给定的概率分布, θ \pmb{\theta} θθθ是常数。对pdf关于 ( x , y ) (x,y) (x,y)积分为1:
∫ x ∈ R ∫ y ∈ R f ( x , y ∣ x 0 , y 0 , σ ) d x d y = 1 \int_{x\in\mathcal{R}} \int_{y\in\mathcal{R}} f(x,y|x_0,y_0,\sigma)\text{d}x\text{d}y=1 xRyRf(x,yx0,y0,σ)dxdy=1

似然函数( f ( x , y ; θ ) f(x,y;\pmb{\theta}) f(x,y;θθθ)

Fisher在1922年提到过likelihood的理解:
两个二项分布的参数分别是 p 1 p_1 p1 p 2 p_2 p2,即 p ( ξ = 0 ) = p 1 , p ( ξ = 0 ) = p 2 p(\xi=0)=p_1,p(\xi=0)=p_2 p(ξ=0)=p1,p(ξ=0)=p2,我们不知道这两个参数的具体值。通过做实验,我们发现第一组实验出现0的频率是第二组实验出现0的频率的三倍,为了量化不同 p p p的这种属性,在不引起混淆的前提下,我们称 p 1 p_1 p1的似然度(likelihood)是 p 2 p_2 p2的似然度的三倍。值得注意的是,这里的似然度不是概率参数 p = p 1 p=p_1 p=p1的概率,只是简单地表示在特定参数 p p p下,该参数导致观测样本出现的相对频率。
例如有两个靶子,靶心分别记为 p 0 = ( x 0 , y 0 ) p_0=(x_0,y_0) p0=(x0y0) p 1 = ( x 1 , y 1 ) p_1=(x_1,y_1) p1=(x1,y1)。我们不知道射手瞄准的是哪个靶子,只是观测到了1个弹点的坐标是 ( x , y ) (x,y) (x,y)。此时 p ( x , y ∣ x 0 , y 0 ) p(x,y|x_0,y_0) p(x,yx0,y0)表示靶心是 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)条件下,出现弹点 ( x , y ) (x,y) (x,y)的概率密度,此时可以对平面上的弹点 ( x , y ) (x,y) (x,y)积分,满足
∫ x ∈ R ∫ y ∈ R f ( x , y ∣ x 0 , y 0 ) d x d y = 1 \int_{x\in\mathcal{R}} \int_{y\in\mathcal{R}} f(x,y|x_0,y_0)\text{d}x\text{d}y=1 xRyRf(x,yx0,y0)dxdy=1
p ( x , y ; x 0 , y 0 ) p(x,y;x_0,y_0) p(x,y;x0,y0)表示观测到 ( x , y ) (x,y) (x,y)这一现象,射手瞄准的是 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的似然度(likelihood)。这里是似然度而不是概率,表示参数 θ = ( x 0 , y 0 ) \theta=(x_0,y_0) θ=(x0,y0)这不是随机事件,而是客观事实,我们基于随机样本去推理客观参数,存在的不确定性称之为似然度,而基于客观参数推断某个样本出现的频率大小,称之为概率。似然函数可能不满足对参数 θ \theta θ积分为0:
例如下图:
条件概率与似然函数
如图,若 θ \theta θ即靶心坐标只有两个取值,分别是 ( x 0 = − 1 , y 0 = 0 ) (x_0=-1,y_0=0) (x0=1,y0=0) ( x 0 = 1 , y 0 = 0 ) (x_0=1,y_0=0) (x0=1,y0=0),虽然条件概率和似然函数的表达式相同:
f ( x , y ∣ x 0 , y 0 ) = 1 2 π σ 2 exp ⁡ { − 1 2 σ 2 [ ( x − x 0 ) 2 + ( y − y 0 ) 2 ] } f ( x , y ; x 0 , y 0 ) = 1 2 π σ 2 exp ⁡ { − 1 2 σ 2 [ ( x − x 0 ) 2 + ( y − y 0 ) 2 ] } f(x,y|x_0,y_0)=\frac{1}{\sqrt{2\pi \sigma^2}}\exp{\left\{-\frac{1}{2\sigma^2}[(x-x_0)^2+(y-y_0)^2]\right\}} \\ f(x,y;x_0,y_0)=\frac{1}{\sqrt{2\pi \sigma^2}}\exp{\left\{-\frac{1}{2\sigma^2}[(x-x_0)^2+(y-y_0)^2]\right\}} f(x,yx0,y0)=2πσ2 1exp{2σ21[(xx0)2+(yy0)2]}f(x,y;x0,y0)=2πσ2 1exp{2σ21[(xx0)2+(yy0)2]}
但是条件概率的自变量是 x , y x,y x,y,对其积分后为1;而似然函数的自变量为 x 0 , y 0 x_0,y_0 x0,y0,对其积分(两个取值求和)之后不一定为1。特别地,在这个例子中,如果 θ \theta θ的取值为 ( x 0 , y 0 ) ∈ R 2 (x_0,y_0)\in\mathcal{R}^2 (x0,y0)R2,似然函数的积分也为1。

引用quora上的一个回答 What is the difference between probability and likelihood
我们可以再做一个类比,假设一个函数 a b a^b ab ,这个函数包含两个变量。 如果你令 b = 2 b=2 b=2,这样你就得到了一个关于 a a a的二次函数,即 : a 2 a^2 a2当你令 a = 2 a=2 a=2时,你将得到一个关于 b b b的指数函数,即 2 b 2^b 2b可以看到这两个函数有着不同的名字,却源于同一个函数。而 p ( x ∣ θ ) p(x|θ) p(xθ)也是一个有着两个变量的函数。如果,你将 θ θ θ设为常量,则你会得到一个概率函数(关于 x x x的函数);如果,你将 x x x设为常量你将得到似然函数(关于 θ θ θ的函数)。

小结

1.在很多情况下,pdf和LF的表达式相同;
2.条件概率pdf是概率测度,满足非负性、积分为1条件,LF不是概率测度,不一定满足积分为1的条件;
3.似然函数是个相对值,可以比较,但不是绝对的概率意义。例如图2中,射手目标是右侧的似然程度要大于左侧的,但两个似然度的和并不一定为1。

[1]: RA Fisher, M.A., 1922. On the mathematical foundations of theoretical statistics. Phil. Trans. R. Soc. Lond. A, 222(594-604), pp.309-368.

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在MATLAB中,似然函数(likelihood function)是用于描述统计模型参数的概率分布的函数。它表示给定观测数据的条件下,模型参数的可能性。 似然函数通常用L(θ|X)表示,θ是模型参数,X是观测数据。似然函数的值越大,表示参数θ的取值越能够解释观测数据。 在MATLAB中,可以通过以下步骤来定义和计算似然函数: 1. 定义概率分布模型:根据具体问题选择合适的概率分布模型,例如正态分布、泊松分布等。使用MATLAB提供的概率分布对象(例如normpdf、poisspdf)来定义概率密度函数或概率质量函数。 2. 构建似然函数:将每个观测数据的概率密度函数或概率质量函数相乘,得到似然函数。对于独立同分布的数据,可以将每个数据的概率密度函数或概率质量函数相乘。 3. 计算似然函数:给定观测数据,将其代入似然函数中进行计算。可以使用MATLAB提供的函数(例如prod)来计算乘积。 以下是一个简单的例子,演示如何计算正态分布模型的似然函数: ```matlab % 定义观测数据 data = [1.2, 2.5, 3.7, 4.1, 5.6]; % 定义正态分布模型的参数 mu = 3; % 均值 sigma = 1; % 标准差 % 构建似然函数 likelihood = prod(normpdf(data, mu, sigma)); % 显示似然函数的值 disp(['似然函数的值为:', num2str(likelihood)]); ``` 希望以上介绍对您有帮助!如果您有任何进一步的问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值