先验概率与后验概率 ,似然与条件概率

P(A)是一种先验概率   P(B|A) 类条件概率.   

贝叶斯公式的解释:如果我们把事件A看做'结果',把诸事件B1,B2...看做导致这个结果的可能的'原因',则可以形象地把全概率公式看做成为'由原因推结果';而贝叶斯公式则恰好相反,其作用于'由结果推原因':现在有一个'结果'A以发生,在众多可能的'原因'中,到底是哪一个导致了这结果"

后验概率,是一种果因概率,即在一个结果已经发生的条件下,可能是其中某一个原因造成的概率有多大.

https://www.cnblogs.com/yemanxiaozu/p/7680761.html

 

概率和似然

统计学中似然和概率却是两个不同的概念。

概率:在特定环境下某件事情发生的可能性,结果没有产生之前依据环境所对应的参数预测某件事情发生(结果)的可能性

似然:据结果判断这个事情本身的性质(参数

 

结果和参数相互对应的时候,似然和概率在数值上是相等的

条件概率P(x|θ):θ 表示环境对应的参数,x 表示结果;θ是前置条件,理解为在θ 的前提下,事件 x 发生的概率

似然  L(θ|x):结果为 x ,参数为θ;

L是关于 θ 的函数,而 P 则是关于 x 的函数

概率描述的是在一定条件下某个事件发生的可能性,概率越大说明这件事情越可能会发生;

似然描述的是结果已知情况下,事件在不同条件下发生的可能性,似然函数值越大说明事件在对应的条件下发生的可能性越大。

 

https://blog.csdn.net/u011508640/article/details/72815981

最大似然估计MLE --最大后验概率估计MAP

 

 

### 贝叶斯公式及其组成部分 贝叶斯公式是一种用于更新概率估计的强大工具,在机器学习领域具有广泛应用。该公式允许通过引入新的证据来调整初始假设的概率。 #### 先验概率 (Prior Probability) 先验概率表示在观察任何数据之前对于某个事件发生的信念程度[^1]。这通常基于先前的知识或经验得出,可以视为模型训练前对参数分布的一种猜测。例如,在垃圾邮件分类器中,可以根据历史记录设定某封电子邮件是垃圾邮件的先验概率。 #### 后验概率 (Posterior Probability) 后验概率是在考虑了新获得的信息之后所得到的目标变量取特定值的可能性大小。具体来说就是当给定了某些观测结果时,我们能够更精确地推断出未知量的状态。继续上面的例子,收到一封具体的邮件后,根据其特征重新评估它是垃圾邮件的概率就属于后验概率。 #### 类条件概率 (Likelihood or Class Conditional Probabilities) 类条件概率指的是给定类别下样本属性出现的概率密度函数\(P(x|C_k)\),其中\(x\)代表输入向量而\(C_k\)则指代第k个类别标签[^2]。这类概率反映了不同类型的对象在其所属群体内的典型表现形式;比如图像识别任务里,圆形物体的颜色分布模式就可以看作是一个典型的类条件概率实例。 ### 机器学习中的应用案例 利用上述概念构建预测模型的一个经典例子便是朴素贝叶斯分类算法: ```python from sklearn.naive_bayes import GaussianNB import numpy as np # 创建简单二维数据集 X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) Y = np.array([0, 0, 0, 1, 1, 1]) clf = GaussianNB() clf.fit(X, Y) print(clf.predict([[0.8, 1]])) ``` 在这个简单的二元分类问题中,`GaussianNB()`实现了高斯朴素贝叶斯方法,它假定各维度上的特征服从正态分布并独立于其他维度。因此可以通过计算每种类别的联合概率——即乘积形式下的先验相应条件下度之积——最终选取最大者作为输出标记。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值