题意: Smith数——一个合数如果一个数的各位之和等于其质因子的各位之和。比如4937775(4937775= 3*5*5*65837)有:4+9+3+7+7+7+5= 42,3+5+5+6+5+8+3+7=42。给出一个数x,求大于x的最小的Smith数。(x最多8位)
思路:由于x较大,无法打出1…x之间的质数,所以只打出1…根号x(10000)之间的质数;最后得到的大于10000的项必为质数。注意处理当前测试的数为质数的情况
输入:
4937774
0
输出:
4937775
#include <stdio.h>
#include <string.h>
#define N 10000
int flag[N],prime[N];
int n,len = 0;
void formprime(){
int i,j;
memset(flag,0,sizeof(flag));
for(i = 2;i<N;i++)
if(!flag[i]){
prime[len++] = i;
for(j = i;j<N;j+=i)
flag[j] = 1;
}
}
int digit(x){
int res=0;
while(x){
res += x%10;
x /= 10;
}
return res;
}
int test(int x){
int temp = digit(x),isprime = x;
int i,sum=0;
for(i = 0;prime[i]<=x&&i<len;i++){
if(prime[i] == isprime)//如果x是小于10000的质数
return 0;
while(x%prime[i]==0){
sum += digit(prime[i]);
x/=prime[i];
}
if(x==1)
break;
}
if(x == isprime)//如果x是大于10000的质数
return 0;
if(x>N)//加上大于10000的质因子
sum += digit(x);
if(sum == temp)
return 1;
return 0;
}
int main(){
freopen("a.txt","r",stdin);
formprime();
while(scanf("%d",&n)&&n){
int i;
for(i = n+1;;i++)
if(test(i)){
printf("%d\n",i);
break;
}
}
return 0;
}