题意:给定若干限制条件填充n*m非负矩阵。约束条件包括:1、 每行数字之和;2、 每列数字之和;3、某些格子里需填数据的具体值或上下界。(输入中的0代表整行或者整列)。如果存在满足所有约束的条件的矩阵,则输出该方案。否则输出IMPOSSIBLE.
思路(北京大学郭炜老师课件):可转化成容量有上下界的最大流(需要先添加虚拟源点和虚拟汇点来判断可行流)问题:将方阵的行从1……n编号,列n+1……n+m编号,添加源点s=0和汇点t=n+m+1.
1>将源点和每一个行节点相连,相连所形成的边的容量和下界置为该行所有数字的和
2>将每一个列节点和汇点相连,相连所形成的边的容量和下界都置为该列所有数字的和
3>从每个行节点到每个列节点连边,容量为无穷大
4> 如果u行v列的数字必须大于w,则以w+1更新边<u,v+n>的容量下界
5> 如果u行v列的数字必须小于w,则以w-1更新边<u,v+n>容量上界
6> 如果u行v列的数字必须等于w,则边<u,v+n>流量的下界和容量都是w
找到的最大流,就是问题的解
#include <stdio.h>
#include <string.h>
#define max(a,b) a>b?a:b
#define min(a,b) a<b?a:b
#define N 240
#define INF 0x3fffffff
int T,n,m;
int flow[N][N],a[N],pre[N],first[N],low[N][N],high[N][N],q[200000];
void init(){
int i,j;
memset(low,0,sizeof(low));
memset(flow,0,sizeof(flow));
for(i = 0;i<N;i++)
for(j = 0;j<N;j++)
high[i][j] = INF;
}
int maxflow(int s,int t){
int front,rear,now,i,res=0;
while(1){
front = rear = -1;
q[++rear] = s;
memset(a,0,sizeof(a));
memset(pre,0,sizeof(pre));
a[s] = INF;
while(front < rear){
now = q[++front];
for(i = 0;i<=t;i++)
if(!a[i] && flow[now][i]>0){
a[i] = min(a[now],flow[now][i]);
q[++rear] = i;
pre[i] = now;
}
}
if(!a[t])
break;
res += a[t];
for(i = t;i!=s;i=pre[i]){
flow[pre[i]][i] -= a[t];
flow[i][pre[i]] += a[t];
}
}
return res;
}
int main(){
freopen("a.txt","r",stdin);
scanf("%d",&T);
while(T--){
int i,j,k,a,b,w,s1,s2,t1,t2,supers,supert,flag = 1,sum=0;
char ch;
init();
//输入
scanf("%d %d",&n,&m);
for(i = 1;i<=n;i++){//每行的数字和
scanf("%d",&j);
low[0][i] = high[0][i] = j;
}
for(i = 1;i<=m;i++){//每列的数字和
scanf("%d",&j);
low[n+i][n+m+1] = high[n+i][n+m+1] = j;
}
scanf("%d\n",&k);
while(k--){//限制条件
scanf("%d %d %c %d",&a,&b,&ch,&w);
s1 = t1 = a;
s2 = t2 = b;
if(!a)//如果a是0,表示所有行,更新行的上下界
s1 = 1,t1 = n;
if(!b)//如果b是0,表示所有列,更新列的上下界
s2 = 1,t2 = m;
for(i = s1;i<=t1;i++)
for(j = s2;j<=t2;j++)
if(ch == '>')//表示下界,注意是w+1
low[i][j+n] = max(low[i][j+n],w+1);
else if(ch == '<')//表示上界,注意是w+1
high[i][j+n] = min(high[i][j+n],w-1);
else{//表示相等,注意是w
low[i][j+n] = max(low[i][j+n],w);
high[i][j+n] = min(high[i][j+n],w);
}
}
//建图,填充flow数组
for(i = 1;i<=n;i++)
for(j = 1+n;j<=m+n;j++)
if(low[i][j]<=high[i][j])
flow[i][j] = high[i][j] - low[i][j];
else//表示某位置不符合限制条件
flag = 0;
if(flag){
supers = n+m+3;//添加的虚拟源点
supert = n+m+2;//添加的虚拟汇点
for(i = 0;i<=n+m;i++)
for(j = 1;j<=n+m+1;j++)
if(low[i][j]){
flow[supers][j] += low[i][j];
flow[i][supert] += low[i][j];
sum += low[i][j];
}
flow[n+m+1][0] = INF;//一条从汇点到源点的无穷边
if(sum == maxflow(supers,supert)){//表示存在可行流,继续求最大流
flow[n+m+1][0] = flow[0][n+m+1] = 0;//去掉那条最后添加的虚拟边
maxflow(0,n+m+1);
for(i = 1;i<=n;i++){
for(j = 1+n;j<=n+m;j++)
printf("%d ",high[i][j]-flow[i][j]);//最终流的结果是上界-剩余
putchar('\n');
}
putchar('\n');
}else//表示不存在可行流
flag = 0;
}
if(!flag)
printf("IMPOSSIBLE\n\n");
}
return 0;
}