poj 2396 有下界的最大流(填充矩阵)

题意:给定若干限制条件填充n*m非负矩阵。约束条件包括:1、 每行数字之和;2、 每列数字之和;3、某些格子里需填数据的具体值或上下界。(输入中的0代表整行或者整列)。如果存在满足所有约束的条件的矩阵,则输出该方案。否则输出IMPOSSIBLE.

思路(北京大学郭炜老师课件):可转化成容量有上下界的最大流(需要先添加虚拟源点和虚拟汇点来判断可行流)问题:将方阵的行从1……n编号,列n+1……n+m编号,添加源点s=0和汇点t=n+m+1.     

1>将源点和每一个行节点相连,相连所形成的边的容量和下界置为该行所有数字的和             

2>将每一个列节点和汇点相连,相连所形成的边的容量和下界都置为该列所有数字的和

3>从每个行节点到每个列节点连边,容量为无穷大

4> 如果u行v列的数字必须大于w,则以w+1更新边<u,v+n>的容量下界

5> 如果u行v列的数字必须小于w,则以w-1更新边<u,v+n>容量上界

6> 如果u行v列的数字必须等于w,则边<u,v+n>流量的下界和容量都是w

找到的最大流,就是问题的解

#include <stdio.h>
#include <string.h>
#define max(a,b) a>b?a:b
#define min(a,b) a<b?a:b
#define N 240
#define INF 0x3fffffff
int T,n,m;
int flow[N][N],a[N],pre[N],first[N],low[N][N],high[N][N],q[200000];
void init(){
	int i,j;
	memset(low,0,sizeof(low));
	memset(flow,0,sizeof(flow));
	for(i = 0;i<N;i++)
		for(j = 0;j<N;j++)
			high[i][j] = INF;
}
int maxflow(int s,int t){
	int front,rear,now,i,res=0;
	while(1){
		front = rear = -1;
		q[++rear] = s;
		memset(a,0,sizeof(a));
		memset(pre,0,sizeof(pre));
		a[s] = INF;
		while(front < rear){
			now = q[++front];
			for(i = 0;i<=t;i++)
				if(!a[i] && flow[now][i]>0){
					a[i] = min(a[now],flow[now][i]);
					q[++rear] = i;
					pre[i] = now;
				}
		}
		if(!a[t])
			break;
		res += a[t];
		for(i = t;i!=s;i=pre[i]){
			flow[pre[i]][i] -= a[t];
			flow[i][pre[i]] += a[t];
		}
	}
	return res;
}
int main(){
	freopen("a.txt","r",stdin);
	scanf("%d",&T);
	while(T--){
		int i,j,k,a,b,w,s1,s2,t1,t2,supers,supert,flag = 1,sum=0;
		char ch;
		init();
		//输入
		scanf("%d %d",&n,&m);
		for(i = 1;i<=n;i++){//每行的数字和
			scanf("%d",&j);
			low[0][i] = high[0][i] = j;
		}
		for(i = 1;i<=m;i++){//每列的数字和
			scanf("%d",&j);
			low[n+i][n+m+1] = high[n+i][n+m+1] = j;
		}
		scanf("%d\n",&k);
		while(k--){//限制条件
			scanf("%d %d %c %d",&a,&b,&ch,&w);
			s1 = t1 = a;
			s2 = t2 = b;
			if(!a)//如果a是0,表示所有行,更新行的上下界
				s1 = 1,t1 = n;
			if(!b)//如果b是0,表示所有列,更新列的上下界
				s2 = 1,t2 = m;
			for(i = s1;i<=t1;i++)
				for(j = s2;j<=t2;j++)
					if(ch == '>')//表示下界,注意是w+1
						low[i][j+n] = max(low[i][j+n],w+1);	
					else if(ch == '<')//表示上界,注意是w+1
						high[i][j+n] = min(high[i][j+n],w-1);
					else{//表示相等,注意是w
						low[i][j+n] = max(low[i][j+n],w);
						high[i][j+n] = min(high[i][j+n],w);
					}
		}
		//建图,填充flow数组
		for(i = 1;i<=n;i++)
			for(j = 1+n;j<=m+n;j++)
				if(low[i][j]<=high[i][j])
					flow[i][j] = high[i][j] - low[i][j];
				else//表示某位置不符合限制条件
					flag = 0;
		if(flag){
			supers = n+m+3;//添加的虚拟源点
			supert = n+m+2;//添加的虚拟汇点
			for(i = 0;i<=n+m;i++)
				for(j = 1;j<=n+m+1;j++)
					if(low[i][j]){
						flow[supers][j] += low[i][j];
						flow[i][supert] += low[i][j];
						sum += low[i][j];
					}
			flow[n+m+1][0] = INF;//一条从汇点到源点的无穷边

			if(sum == maxflow(supers,supert)){//表示存在可行流,继续求最大流
				flow[n+m+1][0] = flow[0][n+m+1] = 0;//去掉那条最后添加的虚拟边
				maxflow(0,n+m+1);
				for(i = 1;i<=n;i++){
					for(j = 1+n;j<=n+m;j++)
						printf("%d ",high[i][j]-flow[i][j]);//最终流的结果是上界-剩余
					putchar('\n');
				}
				putchar('\n');
			}else//表示不存在可行流
				flag = 0;
		}
		if(!flag)
			printf("IMPOSSIBLE\n\n");
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值