题意:一个开披萨店的要把披萨所购所有购买者。一直披萨店在位置0,n个购买者分别在位置1-n。题目给出这n+1个点之间的直线距离,问送货员从披萨店出发,送给所有的购买者且最后回到披萨店所需要的最小距离。
思路:现用floyd处理一下给定的图,剩下的就是TSP问题了。题目给的数据范围比较小(n<=10),可以考虑动态规划方法。目前为止都送给了哪些购买者用一个状态(一个数)表示,相应位为1表示经过过,为0表示未经过。dp[ i ][ j ]表示状态i^(1<<j) (也就是从状态 i 中除去 j 城市的那个状态)到城市 j 的最短距离(更为准确的说,是i相应位为1的点都已经经过,而且最后经过的点是j代表的点的最短距离)。状态转移方程也就是dp[ i ][ j ] = min(dp[ i ] [ j ] , dp[ pre ][ k ]+dis[ k ][ j ])。(其中pre选择为从状态 i 中除去 j 城市的那个状态)。
那么动归有两个方向可以写,第一个版本是对每一个状态,通过状态转移方程进行更新。第二个版本是枚举每个状态,将其能达到的地方进行更新。
时间复杂度都是O(n*n*2^n)。
版本1:
#include <stdio.h>
#include <string.h>
#define INF 0x3fffffff
#define min(a,b) ((a)<(b)?(a):(b))
#define N 15
int n;
int g[N][N],dp[1<<11][N];
void floyd(){
int i,j,k;
for(k = 0;k<=n;k++)
for(i = 0;i<=n;i++)
for(j = 0;j<=n;j++)
g[i][j]=min(g[i][j],g[i][k]+g[k][j]);
}
void solve(){
int i,j,k,m,res = INF;
m = 1<<n;
for(i = 0;i<m;i++)
for(j = 1;j<=n;j++){
if(i == (1<<(j-1))){
dp[i][j] = g[0][j];
continue;
}
if((1<<(j-1)) & i){
dp[i][j] = INF;
for(k = 1;k<=n;k++)
if( ((1<<(k-1))&i) && k!=j)
dp[i][j]=min(dp[i][j],dp[i^(1<<(j-1))][k]+g[k][j]);
}
}
for(i = 1;i<=n;i++)
res = min(res,dp[m-1][i]+g[i][0]);
printf("%d\n",res);
}
int main(){
freopen("a.txt","r",stdin);
while(scanf("%d",&n) && n){
int i,j;
for(i = 0;i<n+1;i++)
for(j = 0;j<n+1;j++)
scanf("%d",&g[i][j]);
floyd();
solve();
}
return 0;
}
版本2:
#include <iostream>
#include <algorithm>
using namespace std;
#define N 12
int s[N][N],n;
int dp[1<<11][11];
void floyd(){
for(int k = 0;k<=n;k++)
for(int i = 0;i<=n;i++)
for(int j = 0;j<=n;j++)
s[i][j] = min(s[i][j],s[i][k]+s[k][j]);
}
int solve(){
int m = 1<<n;
for(int i = 0;i<m;i++)
for(int j = 0;j<n;j++)
dp[i][j] = 0x7fffffff;
for(int i = 0;i<n;i++)
dp[1<<i][i] = s[0][i+1];
for(int i = 1;i<m;i++)
for(int j = 0;j<n;j++)
if(i&(1<<j))
for(int k = 0;k<n;k++)
if(0==(i&(1<<k)))
dp[i|(1<<k)][k] = min(dp[i|(1<<k)][k],dp[i][j]+s[j+1][k+1]);
int res = 0x7fffffff;
for(int i = 0;i<n;i++)
res = min(res,dp[m-1][i]+s[i+1][0]);
return res;
}
int main(){
while(cin>>n){
if(n==0)
break;
for(int i = 0;i<=n;i++)
for(int j = 0;j<=n;j++)
cin>>s[i][j];
floyd();
cout<<solve()<<endl;
}
return 0;
}