旅行商问题 TSP问题 状压dp入门 + floyd poj 3311 hdu 5418

本文介绍了旅行商问题(TSP)的背景和它作为NP完全问题的挑战。针对ACM中的小规模TSP,提出了结合Floyd算法和状压DP的解决方案。状态压缩DP用于表示城市访问状态,通过状态转移方程求解最短路径。同时提及了POJ 3311和HDU 5418两道题目,分别涉及记忆化搜索和递推式的方法。
摘要由CSDN通过智能技术生成

旅行商问题 & TSP问题:有n个城市,从起点 0 开始游历每一个城市,只访问每个城市一次,最后回到起点,所需要的最短路径是多少?
这个属于NP完全问题。最直接的方法就是枚举法,解空间为n个元素的所有排列组合,为 (n1)! 。n稍微一大就无法在有限的时间内做出。还有一些模拟退火算法什么的,这个不太了解,有空再去了解下。
在acm中,对于此问题,n一般都不大,可以运用floyd + 状压dp来做。
状压dp:
对于集合的dp 被称为状态压缩dp。对于一个集合来说我们可以把每一个元素是否选取对应到一个二进制数位里,从而将状态压缩成一个整数。
TSP问题解法:
考虑使用dp来求解。
s表示已经经过的城市的集合,v表示现在正处在的城市。定义dp[s][v]为从v出发访问所有剩余的城市,再返回起点所需要的最短的路径。mp[i][j] 表示 i 到 j 的最短路。
V为所有顶点的集合。初始化dp[V][0] = 0
状态转移方程: dp[s]

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值