poj 1015 dp(陪审团成员的选择)

感觉有点难度的动态规划,思路参考了(http://blog.csdn.net/lyy289065406/article/details/6671105),代码是自己写哒。

大致题意:

在遥远的国家佛罗布尼亚,嫌犯是否有罪,须由陪审团决定。陪审团是由法官从公众中挑选的。先随机挑选n 个人作为陪审团的候选人,然后再从这n 个人中选m 人组成陪审团。选m 人的办法是:控方和辩方会根据对候选人的喜欢程度,给所有候选人打分,分值从0 到20。为了公平起见,法官选出陪审团的原则是:选出的m 个人,必须满足辩方总分D控方总分P的差的绝对值|D-P|最小。如果有多种选择方案的 |D-P| 值相同,那么选辩控双方总分之和D+P最大的方案即可。

输出:

选取符合条件的最优m个候选人后,要求输出这m个人的辩方总值D和控方总值P,并升序输出他们的编号。

 

解题思路:

动态规划。


      为叙述问题方便,现将任一选择方案中,辩方总分和控方总分之差简称为“辩控差”,辩方总分和控方总分之和称为“辩控和”。第i 个候选人的辩方总分和控方总分之差记为V(i),辩方总分和控方总分之和记为S(i)。

现用dp(j, k)表示,取j 个候选人,使其辩控差为k 的所有方案中,辩控和最大的那个方案(该方案称为“方案dp(j, k)”)的辩控和。

并且,我们还规定,如果没法选j 个人,使其辩控差为k,那么dp(j, k)的值就为-1,也称方案dp(j, k)不可行。本题是要求选出m 个人,那么,如果对k 的所有可能的取值,求出了所有的dp(m, k) (-20×m≤ k ≤ 20×m),那么陪审团方案自然就很容易找到了。
    问题的关键是建立递推关系。需要从哪些已知条件出发,才能求出dp(j, k)呢?显然,方案dp(j, k)是由某个可行的方案dp(j-1, x)( -20×m ≤ x ≤ 20×m)演化而来的。

可行方案dp(j-1, x)能演化成方案dp(j, k)的必要条件是:存在某个候选人i,i 在方案dp(j-1, x)中没有被选上,且x+V(i) = k。在所有满足该必要条件的dp(j-1, x)中,选出 dp(j-1, x) + S(i) 的值最大的那个,那么方案dp(j-1, x)再加上候选人i,就演变成了方案 dp(j, k)。

这中间需要将一个方案都选了哪些人都记录下来。不妨将方案dp(j, k)中最后选的那个候选人的编号,记在二维数组的元素path[j][k]中。那么方案dp(j, k)的倒数第二个人选的编号,就是path[j-1][k-V[path[j][k]]]。假定最后算出了解方案的辩控差是k,那么从path[m][k]出发,就能顺藤摸瓜一步步回溯求出所有被选中的候选人。

初始条件,只能确定dp(0, 0) = 0,其他均为-1。由此出发,一步步自底向上递推,就能求出所有的可行方案dp(m, k)( -20×m ≤ k ≤ 20×m)。实际解题的时候,会用一个二维数组dp 来存放dp(j, k)的值。而且,由于题目中辩控差的值k 可以为负数,而程序中数租下标不能为负数,所以,在程序中不妨将辩控差的值都加上修正值fix=400,以免下标为负数导致出错。

为什么fix=400?这是很显然的,m上限为20人,当20人的d均为0,p均为20时,会出现辨控差为-400。修正后回避下标负数问题,区间整体平移,从[-400,400]映射到[0,800]。

此时初始条件修正为dp(0, fix) = 0,其他均为-1。

DP后,从第m行的dp(m, fix)开始往两边搜索最小|D-P| 即可,第一个不为dp[m][k]!=-1的位置k就是最小|D-P|的所在。

最后就是求m个人的D和P,由于D+P = dp(m, |D-P| ) ,|D-P|已知。

那么D= (D+P + |D-P| )/2  ,  P=(D+P-|D-P| ) / 2

计算D和P时注意修正值fix


#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define N 205
int dp[22][805],path[22][805],a[N],b[N],out[N];
int n,m,c=1;
int test(int i,int j,int k,int val){
	if(dp[i-1][j]+b[k] <= dp[i][j+a[k]])//当前辩控差已经达到过,且辩控和更大
		return 0;
	while(--i){//看看之前是否已经用过了第k个人
		if(path[i][j] == k)
			return 0;
		j -= a[path[i][j]];
	}
	return 1;
}
int cmp(const int *a,const int *b){
	return (*a)-(*b);
}
void output(int id){
	int i = 0,k = m;
	while(k){
		out[i++] = path[k][id];
		id -= a[path[k][id]];
		k--;
	}
	qsort(out,m,sizeof(int),cmp);
}
int main(){
	freopen("a.txt","r",stdin);
	while(scanf("%d %d",&n,&m) && (n+m)){
		int i,j,k,x,y,offset,res;
		memset(dp,-1,sizeof(dp));
		memset(path,0,sizeof(path));
		for(i = 1;i<=n;i++){
			scanf("%d %d",&x,&y);
			a[i] = x-y;//辩控差
			b[i] = x+y;//辩控和
		}
		offset = 20*m;//正向偏移量
		dp[0][offset] = 0;//初始化
		for(i = 1;i<=m;i++)//人数
			for(j = 0;j<=offset*2;j++)//遍历i-1个人情形下可能达到的辩控差
				if(dp[i-1][j] >= 0)
					for(k = 1;k<=n;k++)//第i个人我要选谁呢,这里决定
						if(test(i,j,k,dp[i-1][j])){
							dp[i][j+a[k]] = dp[i-1][j]+b[k];
							path[i][j+a[k]] = k;
						}
		for(i = offset;i>=0;i--)//找距离中心最近的辩控差存在
			if(dp[m][i]!=-1 || dp[m][offset*2-i]!=-1){
				if(dp[m][offset*2-i]>dp[m][i]){//如果两个辩控差绝对值相等就看看谁的辩控和更大
					res = dp[m][offset*2-i];
					i = offset*2-i;
				}else
					res = dp[m][i];
				output(i);//输出最优解下的选择情况,并排序
				break;
			}
		i -= offset;
		x = (i + res)/2;
		y = (res - i)/2;
		printf("Jury #%d\n",c++);
		printf("Best jury has value %d for prosecution and value %d for defence:\n",x,y);
		for(i = 0;i<m;i++)
			printf(" %d",out[i]);
		printf("\n\n");
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值