Compromise POJ - 2250 (LCS)

题意

给出两段文字,求最长公共子序列。

思路

经典的最长公共子序列模型,有所不同的是这道题不是求最长公共子序列的长度,而是打印最长的公共子序列。所以在列出状态转移方程的基础上思考如何记录序列是很重要的。
这里写图片描述
C[i, j]表示第一个序列的前i个与第二个序列的前j个最长公共子序列的长度。
我采用的方法是用dir二维数组记录状态转移的方向,然后递归打印即可。
这里写图片描述

AC代码:

#include <cstdio>
#include <cstring>
#include <vector>
#include <stack>
#include <string>
#include <deque>
#include <queue>
#include <set>
#include <iostream>
#include <sstream>
#include <algorithm>
typedef long long LL;
using namespace std;

const int maxn = 100+10;
vector<string> v1;
vector<string> v2;
int dp[maxn][maxn];
int dir[maxn][maxn];     // 记录搜索方向
bool fir = true;

void printLCS(int i, int j) {
    if (i == 0||j == 0) return;
    if (dir[i][j] == 0) {
        printLCS(i-1, j-1);
        if (fir) {
            cout << v1[i-1];
            fir = false;
        }
        else cout << " " << v1[i-1];
    }
    else if (dir[i][j] == 1) printLCS(i-1, j);
    else printLCS(i, j-1);
}

void init() {
    fir = true;
    v1.clear();
    v2.clear();
}

int main() {
    // freopen("input.txt", "r", stdin);
    string s;
    int len1, len2;
    while(cin >> s) {
        v1.push_back(s);
        while (cin >> s) {
            if (s == "#") break;
            v1.push_back(s);
        }
        while (cin >> s) {
            if (s == "#") break;
            v2.push_back(s);
        }
        len1 = (int) v1.size();
        len2 = (int) v2.size();
        for (int i = 0; i <= len1; i++) dp[i][0] = 0;
        for (int j = 0; j <= len2; j++) dp[0][j] = 0;      
        for (int i = 1; i <= len1; i++) {
            for (int j = 1; j <= len2; j++) {
                if (v1[i - 1] == v2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;         
                    dir[i][j] = 0;
                } else if (dp[i - 1][j] > dp[i][j - 1]) {
                    dp[i][j] = dp[i - 1][j];
                    dir[i][j] = 1;
                } else {
                    dp[i][j] = dp[i][j - 1];
                    dir[i][j] = -1;
                }
            }
        }
        printLCS(len1, len2);
        printf("\n");
        init();
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值