题意:给定一棵树,按如下的三种规则在树上放石子:1、在游戏开始时,玩家可以拿K个石子放在桶里。2、在游戏的每一步,玩家可以从桶里拿出一个石子,并放在任意一个空的叶子上。3,当一个父节点的r个子节点都被放上了一个石子,可以将这r个石子都拿去并在父节点上放一个石子。桶里石子可以再次使用。目的在最终根上放上一个石子。问达到目的用的最少的石子数量。
思路:每个节点的选择符合贪心性质,即欲在一个节点上放上石子,那么应该先完成儿子节点中所需石子最多的那个子节点(用贪心的交换法证明即可)。通过这种思路可知将子节点所需石子数量按照降序排列。按照res = max(res,i+temp[i]);进行选择。
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define max(a,b) ((a)>(b)?(a):(b))
#define N 205
struct edge{
int y,next;
}e[N];
int first[N];
int n,m,T,top;
void add(int x,int y){
e[top].y = y;
e[top].next = first[x];
first[x] = top++;
}
int cmp(const void *a,const void *b){
return (*(int *)b)-(*(int *)a);
}
int dfs(int x){
int i,res=0,temp[N],len = 0;
if(first[x] == -1)
return 1;
for(i = first[x];i!=-1;i = e[i].next)
temp[len++] = dfs(e[i].y);
qsort(temp,len,sizeof(int),cmp);
for(i = 0;i<len;i++)
res = max(res,i+temp[i]);
return res;
}
int main(){
scanf("%d",&T);
while(T--){
int i,j,k,num;
top = 0;
memset(first, -1, sizeof(first));
scanf("%d",&n);
for(i = 1;i<=n;i++){
scanf("%d %d",&k,&num);
while(num--){
scanf("%d",&j);
add(i,j);
}
}
printf("%d\n",dfs(1));
}
return 0;
}