题意:给定一棵带权无向树,并给定一个整数m。求树上点间最短路不大于m的点对数量。(1987题意完全相同,又重新写一遍熟练一下)
思路:比较明显的思路是用LCA来做,但问题是用LCA的话,当前问题的查询数量级为n^2,所以不管使用离线LCA还是在线LCA都逃不过O(n^2)的复杂度。经过学习知道了树分治这种东西。
将无根树转化成有根树进行观察。满足条件的点对有两种情况:两个点的路径横跨树根,两个点位于同一颗子树中。
如果我们已经知道了此时所有点到根的距离a[i],a[x] + a[y] <= k的(x, y)对数就是结果,这个可以通过排序之后O(n)的复杂度求出。然后根据分治的思想,分别对所有的儿子求一遍即可,但是这会出现重复的——当前情况下两个点位于一颗子树中,那么应该将其减掉(显然这两个点是满足题意的,为什么减掉呢?因为在对子树进行求解的时候,会重新计算)。
在进行分治时,为了避免树退化成一条链而导致时间复杂度变为O(N^2),每次都找树的重心,这样,所有的子树规模就会变的很小了。时间复杂度O(Nlog^2N)。
树的重心的算法可以线性求解,关于树的重心的定义和解法可以参见poj1655。
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define clr(s,t) memset(s,t,sizeof(s))
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define N 10005
struct edge{
int y,w,n