poj 1836 lis(保证每个人都能看到两边中的一边)

题意:给定一个序列,求最少士兵出列后,使得新队列任意一个士兵都能看到左边或者右边的无穷远处。即左半部分递增,到一个地方后变成递减。

思路:可以从左往右和从右往左做两遍lis,分别记录在dp1和dp2中。此时需要注意,如果从左往右扫一遍,求max(dp1[i]+dp2[i])就错了。可以考虑如下数据:

8

3 4 5 1 2 5 4 3

从这组数据可知,应该是枚举两个中点,当然这并不需要n^2,只需要先从右向左记录dp2的最大值,然后从左往右扫一遍即可。

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <vector>
#define clr(s,t) memset(s,t,sizeof(s))
#define N 1005
using namespace std;
int s[N],n;
int dp1[N],dp2[N];
int main(){
    int i,j,now = 0,res=0;
    scanf("%d",&n);
    clr(dp1,0);
    clr(dp2,0);
    for(i = 1;i<=n;i++){
        double k;
        scanf("%lf",&k);
        s[i] = (int)(k*100000);
    }
    if(n==1){
        printf("0\n");
        return 0;
    }
    s[0] = s[n+1] = 0;
    for(i = 1;i<=n;i++)
        for(j = 0;j<i;j++)
            if(s[i] > s[j])
                dp1[i] = max(dp1[i],dp1[j]+1);
    for(i = n;i>=1;i--)
        for(j = n+1;j>i;j--)
            if(s[i]>s[j])
                dp2[i] = max(dp2[i],dp2[j]+1);
    clr(s, 0);
    for(i = n;i>=1;i--)
        s[i] = max(s[i+1],dp2[i]);//这个地方真是囧,一开始写成s[i]=max(s[i]+1,dp2[i])居然A了
    for(i = 1;i<n;i++){
        now = max(now,dp1[i]);
        res = max(now+s[i+1],res);
    }
    printf("%d\n",n-res);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值