题目大意:n根木材长l_i重w_i,前一根木材大于后一根的话要浪费一分钟准备机器,求最少浪费多少时间?
题目链接:点击打开链接
分析:
这里涉及到了偏序的概念,即若要使stick[i]>stick[j],则必须满足L[i]>L[j]且W[i]>W[j]。
为了方便比较,我们先将L按升序排列,此时便只要考虑W之间的关系了,然后便转化成了从n根木材中选出几堆,每一堆满足w都递增,求最少堆数。
先来考虑这样一个问题,对于N个区间,现要从这N个区间里选出一系列区间且这些区间不重叠,那么至少几次这样的操作可以选完所有区间呢?那么肯定是求出那个最多的重叠次数m,这m个区间肯定不能放在同一系列中,所以最少操作次数就是m。
再回过头来思考这个问题,若我们求出 w[] 的最长下降子序列长度m,那么这m个w肯定是不能放在同一个堆中的,类比上面所提的区间问题,就可以YY出来m便是最终所求解。(比较抽象,一定要仔细体会)
然后是求LIS,这里也介绍2种方法
①dp[i]表示以w[i]结尾的最长下降子序列的长度
若w[i]为前i个里最大的元素,则dp[i]=1
若存在k<i且w[k]>w[i],那么dp[i]=dp[k]+1
综上 dp[i] = max (1,dp[k])(其中k满足k<i且w[k]>w[i])
复杂度为O(n^2)
②利用栈来优化
这个解法不是我想的,从网上学来的,这里面与大家分享一下。这个算法的复杂度只有O(nlogn),在有大量数据的情况下,这算法效率极高。。。
(摘录原作者的话)
这个算法其实已经不是DP了,有点像贪心。至于复杂度降低其实是因为这个算法里面用到了二分搜索。本来有N个数要处理是O(n),每次计算要查找N次还是O(n),一共就是O(n ^ 2);现在搜索换成了O(logn)的二分搜索,总的复杂度就变为O(nlogn)了。
这个算法的具体操作如下(by RyanWang) :
开一个栈,每次取栈顶元素top和读到的元素temp做比较,如果temp > top 则将temp入栈;如果temp < top则二分查找栈中的比temp大的第1个数,并用temp替换它。 最长序列长度即为栈的大小top。
这也是很好理解的,对于x和y,如果x < y且Stack[y] < Stack[x], 用Stack[x]替换Stack[y],此时的最长序列长度没有改变但序列Q的''潜力''增大了。
举例:原序列为1,5,8,3,6,7
栈为1,5,8,此时读到3,用3替换5,得到1,3,8; 再读6,用6替换8,得到1,3,6;再读7,得到最终栈为1,3,6,7。最长递增子序列为长度4。
我想,当出现1,5,8,2这种情况时,栈内最后的数是1,2,8不是正确的序列啊?难道错了?
分析一下,我们可以看出,虽然有些时候这样得不到正确的序列了,但最后算出来的个数是没错的,为什么呢?
想想,当temp>top时,总个数直接加1,这肯定没错; 但当temp<top时呢? 这时temp肯定只是替换了栈里面的某一个元素,所以大小不变,就是说一个小于栈顶的元素加入时,总个数不变。这两种情况的分析可以看出,如果只求个数的话,这个算法比较高效。但如果要求打印出序列时,就只能用DP了。
我们可以用STL来很简便的完成这些操作
附上代码:
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define l first
#define w second
int T, n, dp[5005]; //这里仍然用dp来表示,实质上为一个栈
pair<int, int> sticks[5005];
int main()
{
scanf("%d", &T);
while (T--)
{
scanf("%d", &n);
for (int i = 1; i <= n; i++)
scanf("%d%d", &sticks[i].l, &sticks[i].w);
sort(sticks + 1, sticks + n + 1);
memset(dp, -1, sizeof dp); //可以将其赋值为-1然后利用<span style="font-family: Arial, Helvetica, sans-serif;">lower_bound实现查找操作,第一个-1的位置便是栈顶,自己在纸上模拟一遍就明白了</span>
for (int i = 1; i <= n; i++)
*lower_bound(dp, dp + n, sticks[i].w, greater<int>()) = sticks[i].w; //找到第一个<=w[i]的位置并改变其值
printf("%d\n", lower_bound(dp, dp + n, -1, greater<int>()) - dp); //第一个<=-1的位置便是栈的top
}
return 0;
}