代码地址: https://github.com/youngcmm/scMFGNN
摘要
聚类分析在单细胞RNA测序(scRNA-seq)数据分析中发挥着至关重要的作用,其中基于图神经网络(GNN)的聚类方法近年来迅速成为一项颇具前景的技术。尽管已有显著进展,现有的scRNA-seq聚类方法仍存在两个关键局限:
首先,它们大多将节点属性与细胞-细胞之间的拓扑信息视为同等重要,却忽视了二者在可靠性上的(可能存在的)差异;
其次,它们通常仅使用最后一层网络中学习到的表示,缺乏融合来自不同层次的多尺度判别信息的能力。
为了解决上述问题,本文提出了一种面向scRNA-seq聚类的新方法——单细胞多融合图神经网络(scMFGNN)。
具体而言,本文引入了多融合图神经网络(MFGNN),用于在保留多尺度网络结构信息的同时,学习具有判别力的数据表示。
为应对scRNA-seq数据中常见的高离散性、高异质性与高维特性,网络结构中还融合了零膨胀负二项分布(ZINB)模块。
此外,通过约束节点表示与图拓扑信息之间的一致性,引导模型进行联合学习。