【论文阅读】Towards multi-fusion graph neural network for single-cell RNA sequence clustering

代码地址: https://github.com/youngcmm/scMFGNN


摘要

聚类分析在单细胞RNA测序(scRNA-seq)数据分析中发挥着至关重要的作用,其中基于图神经网络(GNN)的聚类方法近年来迅速成为一项颇具前景的技术。尽管已有显著进展,现有的scRNA-seq聚类方法仍存在两个关键局限:

首先,它们大多将节点属性与细胞-细胞之间的拓扑信息视为同等重要,却忽视了二者在可靠性上的(可能存在的)差异;
其次,它们通常仅使用最后一层网络中学习到的表示,缺乏融合来自不同层次的多尺度判别信息的能力。

为了解决上述问题,本文提出了一种面向scRNA-seq聚类的新方法——单细胞多融合图神经网络(scMFGNN)
具体而言,本文引入了多融合图神经网络(MFGNN),用于在保留多尺度网络结构信息的同时,学习具有判别力的数据表示。
为应对scRNA-seq数据中常见的高离散性、高异质性与高维特性,网络结构中还融合了零膨胀负二项分布(ZINB)模块
此外,通过约束节点表示与图拓扑信息之间的一致性,引导模型进行联合学习。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值