前几篇博客写了matplotlib画各种图像,它是Python中一个十分实用的数据可视化包,用它来处理表格也是非常的轻松高效
引入所需基本模块
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
1.表格样式创建
生成二维数据表
df = pd.DataFrame(np.random.randn(10,4),columns=['a','b','c','d'])
sty = df.style
输出结果:
(1)通过style.applymap()函数按元素处理表格
创建自定义函数,使小于0的数据全部标红
def color_neg_red(val):
if val < 0:
color = 'red'
else:
color = 'black'
return('color:%s' % color)
应用于表格中
df.style.applymap(color_neg_red)
输出结果:
(2)通过style.apply( ) 按行/列处理表格
创建自定义函数,找到每一列最大值,并填充黄色
def highlight_max(s):
is_max = s == s.max()
#print(is_max)
lst = []
for v in is_max:
if v:
lst.append('background-color: yellow')
else:
lst.append('')
return(lst)
应用于表格
df.style.apply(highlight_max, axis = 0, subset = ['a','b','c','d'])
# 创建样式方法,每列最大值填充黄色
# axis:0为列,1为行,默认为0
# subset:索引
输出结果:
也可以通过切片的方式应用于表格,通过pd.IndexSlice( )调用切片
df.style.apply(highlight_max, axis = 1,
subset = pd.IndexSlice[2:5,['b', 'd']])#按行,axis=1
# 通过pd.IndexSlice[]调用切片
# 也可:df[2:5].style.apply(highlight_max, subset = ['b', 'd']) → 先索引行再做样式
输出结果:
2.表格显示控制
通过style.format( ) 函数实现表格的显示控制
创建数据,生成表格
df = pd.DataFrame(np.random.randn(10,4),columns=['a','b','c','d'])
print(df.head())
输出结果:
按照百分数显示
df.head().style.format("{:.2%}")#百分位两位小数
输出结果:
按照小数显示
df.head().style.format("{:.4f}")#四位小数
输出结果:
显示正负数,保留两位小数
df.head().style.format("{:+.2f}")
输出结果:
分列设置表格样式
df.head().style.format({'b':"{:.2%}", 'c':"{:+.3f}", 'd':"{:.3f}"})
输出结果:
3.表格样式调用
这一部分主要是通过Styler内置样式调用
(1)定位空值
df = pd.DataFrame(np.random.rand(5,4),columns = list('ABCD'))#创建数据
df['A'][2] = np.nan#生成空值
df.style.highlight_null(null_color='red')#标出空值
输出结果:
(2)色彩映射
df = pd.DataFrame(np.random.rand(10,4),columns = list('ABCD'))#创建数据
df.style.background_gradient(cmap='Greens',axis =1,low=0,high=1)#设置背景颜色
# cmap:颜色
# axis:映射参考,0为行,1以列
输出结果:
(3)条形图
df = pd.DataFrame(np.random.rand(10,4),columns = list('ABCD'))#创建数据
df.style.bar(subset=['A', 'B'], color='#d65f5f', width=100)#绘制条形图
# width:最长长度在格子的占比
输出结果:
(4)分段式构建样式
df = pd.DataFrame(np.random.rand(10,4),columns = list('ABCD'))#创建数据
df['A'][[3,2]] = np.nan#设定空值
df.style.\
bar(subset=['A', 'B'], color='#d65f5f', width=100).\
highlight_null(null_color='yellow')
输出结果:
ok,差不多就这些了
关注欢喜,走向成功~