高数往事(1) 正太分布的均值方差计算

为什么正态分布的均值方差是μ和σ

证明1


其中,“第三个积分是标准正态分布的密度函数的积分,等于 1”,这一点需要在下文继续证明。

证明思路2

https://statproofbook.github.io/P/norm-mean.html,另一个思路是将指数积分转为error function,再求解。

另外,证明过程用到了积分 e x d x = d ( e x ) e^xdx=d(e^x) exdx=d(ex)

为什么标准正态分布的均值方差是0和1?

How do you show that the standard normal distribution has mean 0 and variance 1?

整个证明的存疑点在于需要利用一个已知事实,即如下公式:

追加证明1 求值 ∫ − ∞ ∞ x 2 e − x 2 2 d x \int_{-\infty}^{\infty} x^{2} e^{-\frac{x^{2}}{2}} dx x2e2x2dx

如何证明该公式的值:
∫ − ∞ ∞ x 2 e − x 2 2 d x \int_{-\infty}^{\infty} x^{2} e^{-\frac{x^{2}}{2}} dx x2e2x2dx

有分部积分法,以及奇函数的特性,化到最后得到 ∫ − ∞ ∞ e − x 2 2 d x \int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}} dx e2x2dx, 而这个公式经过整理,最终可以与error function建立联系。根据其函数曲线,erf(inf)=1。

追加证明2 分部积分法

参考 https://blog.csdn.net/tanjunming2020/article/details/129772756,其证明是从函数 ( u v ) ′ = u v ′ + v u ′ (uv)'=uv'+vu' (uv)=uv+vu出发,从而证明的。

∫ u d v ∫ u d v udv求起来比较困难,但 u v u v uv ∫ v d u ∫ v d u vdu比较好求时,可以用分部积分法来求解。

追加证明3 error function的值

关于高斯积分的证明过程,可以参考wiki 高斯积分的"通过极限计算"一节,利用了双重积分,正方形的内切圆和外切圆面积,以及夹逼定理。

在这里,积分的平方被转化为双重积分,再加以整理。

如何证明e^x的微分是它本身

Proof: The derivative of 𝑒ˣ is 𝑒ˣ

  • https://math.stackexchange.com/questions/190773/proof-of-fracddxex-ex
  • https://www.quora.com/Can-you-prove-that-e-x-is-the-derivative-of-itself
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值