中心极限定理 与 正态分布

  • 学习中心极限定理,学习正态分布,学习最大似然估计

  • 最优化理论及方法

  • 高等数学

  • 统计学

  • 概率论

  • 参数估计

  • 正态分布与中心极限定理(中心极限定理是正态分布的一个前置知识)

    • 如果误差可以看作许多微小量的叠加,则根据中心极限定理(用样本的平均值估计总体的期望),随机误差理所当然服从正态分布;

    • 假设一随机变量X服从一个期望和方差分别为
      μ 和 σ 2 \mu{和}\sigma^2 μσ2
      的正态分布,概率密度函数为
      f ( x ) = 1 2 π σ exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) f(x)=2π σ1exp(2σ2(xμ)2)
      则可以记为
      X ∼ N ( μ , σ 2 ) X \sim N(\mu, \sigma^2) XN(μ,σ2)
      图例表示
      Standard Normal Distribution

    • 正态分布为何如此常见?其真正原因是中心极限定理 (Central Limit theorem),如果一个事物受到多种因素的影响,无论每个因素本身服从什么分布,这些因素加总后,结果的平均值就是正态分布;

    • 正态分布值适合于各种因素叠加的情况,如果这些因素不是彼此独立的,会相互加强影响,则就不会服从正态分布。如果各种因素对结果的影响不是相加,而是相乘,则最终结果将会是对数正态分布.

  • 最大似然估计贝叶斯推理 (新增专题 · 待完善)

    • 参数的意义
  • 最大似然估计的直观解释

    • 最大似然估计的计算
  • MLE

    • 对数似然估计
  • 最大似然估计是否总能得到精确解?

    • 为何称作“ 『最大似然』or 『最大可能』”,而不是『最大概率』?
  • 最小二乘参数估计和最大似然估计的结果相同的条件是什么?

    • 贝叶斯定理
      • 定义
      • 举例
    • 为何贝叶斯定理能结合先验概率
    • 贝叶斯推理
  • 定义

    • 使用贝叶斯定理处理数据分布
    • 贝叶斯定理的模型形式
    • 贝叶斯推断示例
    • 何时 最大后验概率 (Maximum A Posteriori) MAP 估计 与 最大似然 (Maxmium Likelihood Estimation MLE) 估计相等?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值