参考Why is the derivative of ex=ex?的解法如下。
主要是利用导数的定义,将
f
′
(
x
)
f'(x)
f′(x)转化为另一个公式
lim
h
→
0
e
h
−
1
h
\lim_{h \to 0} \frac{e^h - 1}{h}
limh→0heh−1。网页答案说,只要用泰勒公式就可以展开那个式子求得值为1,但是,泰勒展开本身就要用到
e
x
e^x
ex的导数,而我们正是要求它,这就出现了循环论证。
因此,我们可以使用另一种方式证明,参考Proof: The derivative of 𝑒ˣ is 𝑒ˣ。
首先,设
n
=
e
Δ
x
−
1
n=e^{\Delta x}-1
n=eΔx−1,然后有:
lim
Δ
x
→
0
e
Δ
x
−
1
Δ
x
=
lim
n
→
0
n
ln
(
n
+
1
)
=
lim
n
→
0
1
n
∗
n
1
n
∗
ln
(
n
+
1
)
=
lim
n
→
0
1
ln
(
n
+
1
)
1
n
=
1
ln
lim
n
→
0
(
n
+
1
)
1
n
=
1
ln
e
=
1
\begin{align} \lim_{\Delta x\to 0} \frac{e^{\Delta x} - 1}{\Delta x} &= \lim_{n \to 0} \frac{n}{\ln(n+1)} \\ &= \lim_{n \to 0} \frac{\frac{1}{n} * n}{\frac{1}{n} * \ln(n+1)} \\ &= \lim_{n \to 0} \frac{1}{\ln(n+1)^{\frac{1}{n}}} \\ &= \frac{1}{\ln \lim_{n \to 0} (n+1)^{\frac{1}{n}}} \\ &= \frac{1}{\ln e } \\ &= 1 \\ \end{align}
Δx→0limΔxeΔx−1=n→0limln(n+1)n=n→0limn1∗ln(n+1)n1∗n=n→0limln(n+1)n11=lnlimn→0(n+1)n11=lne1=1
所以,结合第一张图的第四公式,有:
f
′
(
x
)
=
e
x
lim
Δ
x
→
0
e
Δ
x
−
1
Δ
x
=
e
x
∗
1
=
e
x
f'(x)=e^x \lim_{\Delta x \to 0} \frac{e^{\Delta x} - 1}{\Delta x}=e^x * 1 = e^x
f′(x)=exΔx→0limΔxeΔx−1=ex∗1=ex
因此推论得证,e^x的导数是它本身
喜欢请点赞!