为什么e^x的导数是本身

参考Why is the derivative of ex=ex?的解法如下。

主要是利用导数的定义,将 f ′ ( x ) f'(x) f(x)转化为另一个公式 lim ⁡ h → 0 e h − 1 h \lim_{h \to 0} \frac{e^h - 1}{h} limh0heh1。网页答案说,只要用泰勒公式就可以展开那个式子求得值为1,但是,泰勒展开本身就要用到 e x e^x ex的导数,而我们正是要求它,这就出现了循环论证

因此,我们可以使用另一种方式证明,参考Proof: The derivative of 𝑒ˣ is 𝑒ˣ

首先,设 n = e Δ x − 1 n=e^{\Delta x}-1 n=eΔx1,然后有:
lim ⁡ Δ x → 0 e Δ x − 1 Δ x = lim ⁡ n → 0 n ln ⁡ ( n + 1 ) = lim ⁡ n → 0 1 n ∗ n 1 n ∗ ln ⁡ ( n + 1 ) = lim ⁡ n → 0 1 ln ⁡ ( n + 1 ) 1 n = 1 ln ⁡ lim ⁡ n → 0 ( n + 1 ) 1 n = 1 ln ⁡ e = 1 \begin{align} \lim_{\Delta x\to 0} \frac{e^{\Delta x} - 1}{\Delta x} &= \lim_{n \to 0} \frac{n}{\ln(n+1)} \\ &= \lim_{n \to 0} \frac{\frac{1}{n} * n}{\frac{1}{n} * \ln(n+1)} \\ &= \lim_{n \to 0} \frac{1}{\ln(n+1)^{\frac{1}{n}}} \\ &= \frac{1}{\ln \lim_{n \to 0} (n+1)^{\frac{1}{n}}} \\ &= \frac{1}{\ln e } \\ &= 1 \\ \end{align} Δx0limΔxeΔx1=n0limln(n+1)n=n0limn1ln(n+1)n1n=n0limln(n+1)n11=lnlimn0(n+1)n11=lne1=1

所以,结合第一张图的第四公式,有:
f ′ ( x ) = e x lim ⁡ Δ x → 0 e Δ x − 1 Δ x = e x ∗ 1 = e x f'(x)=e^x \lim_{\Delta x \to 0} \frac{e^{\Delta x} - 1}{\Delta x}=e^x * 1 = e^x f(x)=exΔx0limΔxeΔx1=ex1=ex
因此推论得证,e^x的导数是它本身

喜欢请点赞!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值