深度学习笔记
文章平均质量分 79
台大李宏毅老师深度学习笔记
dupei
这个作者很懒,什么都没留下…
展开
-
李宏毅《Deep Learning》学习笔记 - 强化学习
强化学习学习资料:PPT, Video1. Policy-based Approach1.1 使用NN作为Actor1.2 设计损失函数在开始设计RL的损失函数之前,我们先来回归一下监督学习中的损失函数。RL中常用的损失函数是total reward的期望值,另外,即便同一个actor在玩游戏,产生的序列也是不一样的,原因是由于游戏中的随机性。产生的不同序列的概率,计算方式如上。其中,只有与θ\thetaθ相关的,才受actor影响。reward的期望值,可以用N次游戏的rewa原创 2021-07-12 10:07:46 · 960 阅读 · 2 评论 -
李宏毅《Deep Learning》学习笔记 - Anomaly Detection
学习资料:video, PPT1. 缘起面对的问题是什么?2. 有标签的情况2.1 分类问题如果能够收集到大量的有标签数据,直接训练一个二分类器,就可以结束了。但是,很多情况下是很难收集anomaly example的。对于有标签的情况,其中一种是对normal example可以分为C类,那么,可以训练一个分类器,将样本做C分类。对于normal example,被识别为某一类别的概率会非常高。对于anomaly example,被识别为某一类的概率会相对偏低。通过设置阈值λ\la原创 2020-11-24 11:31:33 · 264 阅读 · 0 评论 -
李宏毅《Deep Learning》学习笔记 - GNN
Graph Neural Network学习资料:video1, video2, PPT1. Roadmap2. Spatial-based在GNN中常用的术语,aggregate类似于CNN中的convolution,就是用周边节点的feature更新下一层的hidden feature。readout是把所有nodes的feature集合起来代表整个graph的feature。2.1 NN4G隐藏层feature的更新方法:(以v3v_3v3后续的隐藏节点为例)第0层的feature原创 2020-11-13 11:24:03 · 426 阅读 · 0 评论 -
李宏毅《Deep Learning》学习笔记 - BERT and GPT
视频:https://www.youtube.com/watch?v=UYPa347-DdE&list=PLJV_el3uVTsOK_ZK5L0Iv_EQoL1JefRL4&index=61课件:http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2019/Lecture/BERT%20(v3).pdf原创 2020-06-11 20:58:23 · 384 阅读 · 0 评论 -
李宏毅《Deep Learning》学习笔记 - transformer
视频:https://www.youtube.com/watch?v=ugWDIIOHtPA&list=PLJV_el3uVTsOK_ZK5L0Iv_EQoL1JefRL4&index=61&t=1s课件:http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2019/Lecture/Transformer%20(v5).pdfTransformer是Seq2Seq with Self-attensionBERT是unsupervised原创 2020-06-11 20:53:37 · 984 阅读 · 0 评论 -
李宏毅《Deep Learning》学习笔记 - seq2seq
Seq2Seq视频:https://www.youtube.com/watch?v=ZjfjPzXw6og原创 2020-04-01 21:30:54 · 932 阅读 · 0 评论 -
李宏毅《Deep Learning》学习笔记 - RNN
视频:https://www.youtube.com/watch?v=xCGidAeyS4M课件:http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2016/Lecture/RNN%20(v2).pdf不是有3个Network,而是,同一个Network在不同的时间被使用了3次,这里,同样的weight使用相同的颜色表示。传说Jo...原创 2020-03-30 21:08:47 · 284 阅读 · 0 评论