最近在学习语音识别的知识,发现李宏毅老师今年也出了相应的视频,相应的课件可以从下面的位置获取:http://speech.ee.ntu.edu.tw/~tlkagk/courses_DLHLP20.html
Youtube视频:
https://youtu.be/AIKu43goh-8
https://youtu.be/BdUeBa6NbXA
https://youtu.be/CGuLuBaLIeI
课件:
http://speech.ee.ntu.edu.tw/~tlkagk/courses/DLHLP20/ASR%20%28v12%29.pdf
Listen, Attend, and Spell (LAS)
1. Framework
1.1 Listen
Encoder的目标是从语音的声音特征中,识别出语音的内容信息,将不同的说话人音色的差异和外部的噪声过滤掉。
1.1.1 Encoder的实现方式
a. Encoder的实现方式一:RNN
单向、双向 RNN都可以
b. Encoder的实现方式二:CNN
也有将CNN和RNN混合使用的,即下面几层使用CNN,上面几层使用RNN的。
c. Encoder的实现方式三:Self-attention
Self-attention的介绍:https://www.youtube.com/watch?v=ugWDIIOHtPA
1.1.2 如何提升训练效率?
Down Sampling有助提升训练的效率,节省计算量。原因是语音向量的数量太大,并且向量之间相似性和重复性高,可以适当地做下采样。下面会介绍几种常见的down sampling的方法。
a. Pyramid RNN和Pooling over time
Pyramid RNN的思路是在做RNN的时候,第二层会同时使用第一层的两个节点输出作为输入。
Pooling over time的思路类似,只使用第二个阶段的输出作为下一层的输入。
b. CNN和self-attention的down sampling
TDNN的思路是使用CNN做卷积处理的时候,中间省略多个向量。
Truncated self-attention的思路是通过控制attention的宽带来实现,只考虑前后受限宽度的输入。
1.2 Attention
Attention的工作类似seq2seq,输入是Encoder的输出和关键词
z
z
z,通过函数match进行处理,得到输出。下图的右侧是常用的match function,也就是dot-product attention。其中,下图右侧是dot-product attention的示意图,
W
W
W是transform函数。
dot-product attention的作用就是判断向量
h
h
h和向量
z
z
z之间的相似度。
另一种match function是additive attention,见下图右侧。
经过上面的处理以后,我们得到了一系列的
α
0
1
,
α
0
2
,
α
0
3
,
.
.
.
\alpha_0^1,\alpha_0^2,\alpha_0^3,...
α01,α02,α03,...,然后,做softmax处理,得到
α
^
0
1
,
α
^
0
2
,
α
^
0
3
,
.
.
.
\hat{\alpha}_0^1,\hat{\alpha}_0^2,\hat{\alpha}_0^3,...
α^01,α^02,α^03,...,使得他们的和为1。再将其与
h
i
h^i
hi做dot-production,即
c
0
=
∑
α
^
0
i
h
i
c^{0}=\sum \hat{\alpha}_{0}^{i} h^{i}
c0=∑α^0ihi
其中,产生的
c
0
c^{0}
c0将会用于后续decoder的输入,也被称为Context Vector。
1.3 Spell
有了
c
0
c^0
c0以后,就可以通过self-attention,生成
z
1
z^1
z1,再做transform+softmax,生成token的distribution,其中,最大的就是预测的结果
c
c
c
有了
z
1
z^1
z1以后,可以重复上面的
z
0
z^0
z0过程,生成
α
1
1
,
α
1
2
,
α
1
3
,
.
.
.
\alpha_1^1,\alpha_1^2,\alpha_1^3,...
α11,α12,α13,...
进一步计算出
c
1
c^1
c1,有了
c
1
c^1
c1以后,配合之前预测的c,生成
z
1
z^1
z1,然后,预测出新的输出a。
一直到最后的
当然,上面所说的步骤,都是建立在decoder的参数是已经确定下来的基础上,并且,在过程中,会使用到beam search的技术,这个可以参见下面一篇文章的介绍。
接下来,我们就来介绍训练过程
2. Train
2.1 训练过程
token表示为one-hot vector,训练的目标就是将cross entropy loss越小越好。
训练过程中,与使用过程中有一个不一样的地方:后续的预测使用真实的结果(ground truth),而不是预测的结果。这个过程叫teacher forcing。
2.2 为什么使用Teacher Forcing?
因为在训练Decoder的时候,是从随机参数开始训练,
z
0
z^0
z0输出的结果大概率都是错误的,如果使用这种错误的输出作为后续的输入,会导致后续节点的参数训练错误。这样就带来一个问题,针对前置错误的输出
x
x
x,后续
z
1
z^1
z1可以给出正确的预测结果,但是,对于原本正确的输出
c
c
c,却无法给出正确的预测结果。
所以,最好的办法就是在训练过程中,不要考虑前面的输出,直接使用正确的ground truth。这种方法就是teacher forcing。
2.3 Decoder中是如何使用attention的呢?
常见的方式有下面两种:
第一种是
z
t
z^t
zt,做attention以后的输出
c
t
c^t
ct,是用于下一个decode。
第二种是
z
t
z^t
zt,做attention以后的输出
c
t
c^t
ct,是用于当前的decode。
在第一篇使用LAS的文章中,上面的两种方法合并在一起使用,如下:
Location-aware Attention
在语音识别这个场景中,使用attention机制存在一个问题:在某个时刻做语音识别,应该是与当前时刻之前的一些语音内容有关系,或者是前后一定时间内的语音内容有关,而与更远的其他时间的语音内容没有关系。
原始论文中增加了location-aware attention,用于解决上述的问题。
3. LAS的局限
最后,再说一下LAS的局限:LAS做语音识别是需要听完一整段语音,才能生成相应的文字内容,没有办法做到一遍听语音内容,一遍生成相应的文字内容。
后面我们会再介绍其他的模型,用于解决这个问题。