统计机器学习
文章平均质量分 57
以张志华老师在上海交通大学所授的统计机器学习为主要内容。做一些自己的学习总结。
dutmathjc
stay hungry,stay foolish.
展开
-
机器学习常用衡量标准
机器学习中衡量指标 准确率(accuracy)精确率(precision)召回率(Recall) 混淆矩阵(Confusion Matrix) 预测值 正例 反例 真实值 正例 TP(True Positive) FN(False Negative) 反例 FP(False Positive) .原创 2021-03-17 11:39:43 · 590 阅读 · 0 评论 -
感知机——统计学习方法,李航
感知机简介: 二类分类的线性分类模型,属于判别模型。输入为实例的特征向量,输出为实例的类别,取值为+1和-1。 感知机学习旨在求出将训练数据进行线性划分的分离超平面。 引入基于误分类的损失函数,利用梯度下降法对损失函数进行极小化,求得感知机模型。 感知机学习算法分为原始形式和对偶形式。 感知机于1957年由Rosenblatt提出,是神经网络与支持向量机的基础。 感知机模型: ...原创 2020-06-22 20:03:58 · 198 阅读 · 0 评论