感知机简介:
二类分类的线性分类模型,属于判别模型。输入为实例的特征向量,输出为实例的类别,取值为+1和-1。
感知机学习旨在求出将训练数据进行线性划分的分离超平面。
引入基于误分类的损失函数,利用梯度下降法对损失函数进行极小化,求得感知机模型。
感知机学习算法分为原始形式和对偶形式。
感知机于1957年由Rosenblatt提出,是神经网络与支持向量机的基础。
感知机模型:
二类分类的线性分类模型,属于判别模型。输入为实例的特征向量,输出为实例的类别,取值为+1和-1。
感知机学习旨在求出将训练数据进行线性划分的分离超平面。
引入基于误分类的损失函数,利用梯度下降法对损失函数进行极小化,求得感知机模型。
感知机学习算法分为原始形式和对偶形式。
感知机于1957年由Rosenblatt提出,是神经网络与支持向量机的基础。
感知机模型: