感知机——统计学习方法,李航

感知机简介:

二类分类的线性分类模型,属于判别模型。输入为实例的特征向量,输出为实例的类别,取值为+1和-1。

感知机学习旨在求出将训练数据进行线性划分的分离超平面

引入基于误分类的损失函数,利用梯度下降法对损失函数进行极小化,求得感知机模型。

感知机学习算法分为原始形式和对偶形式

感知机于1957年由Rosenblatt提出,是神经网络与支持向量机的基础。

 

 

感知机模型:

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值