5个特征选择算法,让你的数据处理得心应手

本文介绍了5种特征选择算法:皮尔逊相关系数、卡方分布、递归特征消除、套索正则化和基于树的特征选择,通过足球运动员数据集来演示如何找出关键特征。特征选择能避免过拟合、提高模型可解释性和减少计算资源。Scikit-learn库提供了实现这些方法的工具。
摘要由CSDN通过智能技术生成

全文共5462字,预计学习时长11分钟

 

 

图片来源:https://unsplash.com/@seefromthesky

 

数据科学是研究算法的学问。本文将会介绍一些处理数据时最常用的特征选择技术。

 

我们经常遇到这样的情况:在创建了大量特征后,又需要减少数量,最后再使用相关性或者基于树的方法来找出其中的重要特征。那么,如何让这些方法变得更有结构呢?

 

 

为何要进行特征选择?

 

在文章开始之前,先来回答这个问题:为什么不将所有的特征都交给机器学习算法,让它来决定哪些特征比较重要呢?

 

以下便是不能的三个原因:

 

1. 维数的诅咒——过拟合

 

 

维数的诅咒:随着特征空间维数的增加,配置数量将会以指数级增长,因此观测量会下降

 

如果数据中的列数多于行数,就能完美匹配训练数据,但这却并不适用于新样本。因此这样什么也没学到。

 

2. 奥卡姆剃刀原理

 

模型应当简单易懂。如果特征太多,就失去了可解释性。

 

3. 无用输入和输出

 

很多时候会出现像名称或ID变量等非信息特征。劣质输入也会产生劣质输出。

 

此外,大量特征会使模型量大、耗时,更难落实生产。

 

 

那应该怎么做?

 

 

答案是:只选择有用特征。

 

幸运的是,Scikit-learn能便捷简单地选择特征。特性选择有很多种方法,但是大多可以分为三类:

 

• 过滤:列入一些筛选特征的标准,如相关性/卡方分布。

 

• 包装:包装法将特征选择看作是搜索问题。如回归特征消除。

 

• 嵌入:嵌入法使用内置了特征选择方法的算法。比如,Lasso和RF都有各自的特征选择方法。

 

理论已经讲够了,接下来开始说五个特征选择的方法。

 

本文将使用数据集来方便理解——用一个足球运动员的数据集来找到成为优秀足球运动员的秘诀。

 

 

 

如果不理解足球术语也没关系,术语并不多。

 

Kaggle Kernel代码:https://www.kaggle.com/mlwhiz/feature-selection-using-footba

n many data analysis tasks, one is often confronted with very high dimensional data. Feature selection techniques are designed to find the relevant feature subset of the original features which can facilitate clustering, classification and retrieval. The feature selection problem is essentially a combinatorial optimization problem which is computationally expensive. Traditional feature selection methods address this issue by selecting the top ranked features based on certain scores computed independently for each feature. These approaches neglect the possible correlation between different features and thus can not produce an optimal feature subset. Inspired from the recent developments on manifold learning and L1-regularized models for subset selection, we propose here a new approach, called {\em Multi-Cluster/Class Feature Selection} (MCFS), for feature selection. Specifically, we select those features such that the multi-cluster/class structure of the data can be best preserved. The corresponding optimization problem can be efficiently solved since it only involves a sparse eigen-problem and a L1-regularized least squares problem. It is important to note that MCFS can be applied in superised, unsupervised and semi-supervised cases. If you find these algoirthms useful, we appreciate it very much if you can cite our following works: Papers Deng Cai, Chiyuan Zhang, Xiaofei He, "Unsupervised Feature Selection for Multi-cluster Data", 16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD'10), July 2010. Bibtex source Xiaofei He, Deng Cai, and Partha Niyogi, "Laplacian Score for Feature Selection", Advances in Neural Information Processing Systems 18 (NIPS'05), Vancouver, Canada, 2005 Bibtex source
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值