全文共5489字,预计学习时长11分钟
可视化能解答那些尚未发现的问题。本·施耐德曼(Ben Shneiderman)
掌握数据可视化技术会打开新世界的大门,带来更多机会。精心设计的可视化能帮助程序员找到原始数据集的核心。 这是成功的数据科学项目和普通的数据科学项目之间的区别。
因此,本文旨在展示数据可视化的强大功能。 本文总结了15种惊艳的可视化方式,涵盖了各种各样的主题。 可以应用于选择的任何工具中,但本文将以Python、R、Tableau和D3.js为例。
1. 用R进行数据可视化
在选择数据可视化工具时,R语言是创建ggplot2库不二之选。
只需几行代码就能实现有个性的可视化、获取实时反馈、揭示数据模式。 怪不得偏好Python的程序员也会在Jupyter notebooks 中安装ggplot2(没错,这项功能目前已经实现了)。
如果你正在使用R语言但还未安装ggplot2 ,那就从现在开始吧:
• R语言中数据可视化全方位指导
传送门:https://www.analyticsvidhya.com/blog/2015/07/guide-data-visualization-r/?utm_source=blog&utm_medium=11-data-visualizations-python-r-tableau-d3js
• R语言用户使用ggplot2时的10个常见问题
传送门:https://www.analyticsvidhya.com/blog/2016/03/questions-ggplot2-package-r/?utm_source=blog&utm_medium=11-data-visualizations-python-r-tableau-d3js
2. 用R语言创建BBC式的可视化
严格意义上来讲,这不是可视化,不过也基本上如此。 上图展示了BBC数据团队发布的可视化融合。
实际上,BBC数据团队已经开发并发布了一个R语言包和说明书,用于生成类似上图的可视化效果。 R语言包的名称为bbplot,其中包含创建和导出可视化的函数,可用于ggplot中来制作BBC数据团队风格的可视化。
以下是一些重要资源:
• bbplot包
传送门:https://github.com/bbc/bbplot
• BBC数据团队的R语言说明书
传送门:https://bbc.github.io/rcookbook/
3. 用R语言构建交互图
谁不喜欢交互图呢? 它们是演示文稿中最吸引人的方面之一(如果使用得当的话)。 这一可视化方式展示了不同大洲的人口预期寿命与人均国内生产总值之间的变化关系。
这么小的空间竟可以塞进这么多的信息。 有没有一种包可以实现上图可视化呢? 当然是gganimate啦! 毫无疑问,ggplot的强大功能可以延伸到另一种绝妙的可视化类型。
读者可以根据该指南在R语言中创建交互图:
• 如何在R中创建动图以分析健康数据
传送门:https://www.analyticsvidhya.com/blog/2019/04/how-built-personalized-interactive-fitness-tracker-dashboard-r/?utm_source=blog&utm_medium=11-data-visualizations-python-r-tableau-d3js
4. 用R语言构建桑基图