全文共3095字,预计学习时长9分钟
来源:Pexels
本文将解释如何整合深度学习模型,构建服装推荐系统。
我们想要建立一个服装推荐系统,可以使用四种深度学习模型来获取用户服装使用的重要特征。
推荐系统可分为4类:
基于产品特性的推荐
基于其他用户对产品的行为的推荐
基于用户一般特征的推荐
基于上述多项标准的推荐
来源:Pexels
在案例中,我们将根据用户和产品特性提出建议。计入考虑的用户特征是性别、年龄和体重指数(BMI)。计入考虑的产品特征是用户所穿的衣服类型。因此,我们需要一张用户的照片,对所有特征进行预测,推荐相应的服装。
将从用户的全身图像中获得服装特征。
使用名为AlphaPose的人体姿态估计系统来确定用户是否完整。AlphaPose检测一个人的19个点。如果检测到至少17个点,就认定是完整人形。
图1: AlphaPose估计系统
我们重新训练了网上最知名的其中一种分类器——YOLO v3。YOLO同时也是最精确的图像分类器之一。用于训练的数据集是一组巨大的 MMLAB 数据集,DeepFashion。
使用的另一个模型是 Dlib,get_frontal_face_detector()函数。此模型由 5 个 HOG 筛选器构建。模型检测前视图面和侧视图面。之所以选择该模型是因为它速度快且精确。在检测年龄和性别时,我们根据数据科学的文章,使用 openCV 和卷积神经网络对年龄和性别进行分类。
基于一篇名为《利用Keras和转移学习从人脸图像中估计身体质量指数》(Estimating Body Mass Index from face images using Keras andtransfer learning)的文章对IMC进行估计。