Pandas万花筒:让绘图变得更美观


全文共1803字,预计学习时长10分钟

 

图源:tehrantimes

流行 Python 数据分析库 Pandas 中的绘图功能一直是迅速绘制图表的首选之一。但是,其可用的可视化效果总是十分粗略,实用有余、美观不足。

 

笔者常用 Pandas 的绘图功能快速地执行一些可视的数据探索,但在介绍数据洞察时,我会使用“更美观”的绘图库(如 Plotly 或 Bokeh )来重做可视化。

 

自最新的 Pandas 版本0.25.3发布后,无需这样做了,现在我们可以使用第三方可视化库作为 Pandas 绘图功能的后端。Plotly是一款基于 web 实现交互式可视化的流行Python库,其最近发布了 Pandas绘图后端。

 

来看看如何使用 Plotly 和 Bokeh 后端创建更丰富的可视化效果。

 

使用不同的后端

想要激活绘图功能的不同后端需在导入 pandas 后,添加此行代码:

 

pd.options.plotting.backend =  plotly

当前可用的后端有:

 

·        Plotly

·        Holoviews

·        Matplotlib

·        Pandas _bokeh

·        Hyplot

Plotly后端

 

Plotly是一个 Python库,其支持丰富的交互式可视化效果。Plotly包的好处之一在于它是在库的 Javascript 版本之上构建的,这意味着图表会基于Web,可以显示为 HTML 文件或嵌入到基于Python的Web应用程序中。用户还可以将可视化内容下载为高质量的图像文件,以便在文档或论文中使用。

 

下面来浏览一些Plotly作为Pandas绘图后端的快速示例。

 

如果还没有安装Plotly ,则需要使用pip intsall plotly来安装。如果是在Jupyterlab中使用 Plotly ,则需要额外执行几个安装步骤来显示可视化效果。首先,安装IPywaidgets:

 

pipenv install jupyterlab " ipywidgets>=7.5"pip install jupyterlab "ipywidgets>=7.5"

然后运行以下命令以安装Plotly扩展:

 

jupyter labextension install jupyterlab-plotly@4.8.1

为了说明绘图后端的用法,使用openml.org名为“wine(葡萄酒)”的数据集。

 

import pandas as pd     
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值