全文共3488字,预计学习时长9分钟
图源:unsplash
当代码投入生产时,你需要去组织代码的文件。读写、创建和运行许多代码文件是件非常耗时的事。本文将展示如何自动化这些繁琐的操作:
· 遍历一个目录中的文件
· 创建尚未建立的嵌套文件
· 使用bash for循环来运行一个有多个输入端的文件
在处理数据科学项目时,这些技巧为笔者节省了大量的时间。希望对你也有用!
遍历一个目录中的文件
如果有如下多个数据需要读取和处理:
├── data│ ├── data1.csv│ ├── data2.csv│ └── data3.csv└── main.py
可以手动地一次读取一个文件:
import pandas as pd def process_data(df): passdf = pd.read_csv(data1.csv)process_data(df)df2 = pd.read_csv(data2.csv)process_data(df2)df3 = pd.read_csv(data3.csv)process_data(df3)
这是可行的,但是当有超过三个数据时,效率就会变得很低。如果上述脚本中唯一改变的是数据,为什么不用for循环来访问每个数据呢?
下面的脚本允许我们遍历指定目录中的文件:
import os import pandas as pd defloop_directory(directory:str): Loop files in thedirectory for filename in os.listdir(directory): if filename.endswith(".csv"): file_directory = os.path.join(directory,filename) print(file_directory) pd.read_csv(file_directory) if __name__== __main__ : loop_directory( data/ ) data/data3.csvdata/data2.csvdata/data1.csv
对上面脚本的解释如下:
· for filename in os.listdir(directory) : 在一个指定的目录中遍历文件。
· if filename.endswith(".csv") :运行(访问?)以‘.csv’ 结尾的文件。
· file_directory = os.path.join(directory, filename) : 连接父目录( data )和该目录中的文件。
现在就可以在‘data’目录中访问所有的文件啦!
如果不存在,就创建嵌套文件
有时你可能想要通过创建嵌套文件来管理代码或模型,在之后更容易地寻找。比如,可以运用‘model 1’来明确规定一个有着具体特征的程序。当使用model 1时,你可能想要尝试运用不同种类的机器学习模型来训练数据(‘model1/XGBoost’)。
在使用各个机器学习模型时,我们甚至想要去保存不同样式的模型,因为它们所运用的超参数存在不同。因此,模型目录就像下面的示例一样复杂:
model├── model1│ ├── NaiveBayes│ └── XGBoost│ ├── version_1│ └── version_2└── model2 ├── NaiveBayes └── XGBoost ├── version_1 └── version_2
对每个所创的模型手动地建立嵌套文件可能需要花费很长的时间。有没有能够自动化这个进程的方法?有,通过使用 os.makedirs(datapath)。
defcreate_path_if_not_exists(datapath): Create the new file if not exists andsave the data ifnot os.path.exists(datapath): os.makedirs(datapath) if __name__== __main__ : create_path_if_not_exists( model/model1/XGBoost/version_1 )
运行上面的文件,可以看到嵌套文件‘model/model2/XGBoost/version_2’自动建成了。现在便可以将模型或者数据储存到新的目录里了!
import joblib import os defcreate_path_if_not_exists(datapath): Create thenew file if not exists and save the data ifnot os.path.exists(datapath): os.makedirs(datapath) if __name__== __main__ : # Create directory model_path = model/model2/XGBoost/version_2 create_path_if_not_exists(model_path) # Save file joblib.dump(model, model_path)
Bash for循环:用不同参数运行一个文件
图源:unsplash
如果要运行一个具有不同参数的文件怎么办呢?比如,可能要用同一个脚本去预测使用不同模型的数据。
import joblib # df = ... model_path = model/model1/XGBoost/version_1 model = joblib.load(model_path) model.predict(df)
如果一个脚本需要长时间来运行且有着多个要运行的模型,用脚本一个一个地运行会是非常耗时。有什么办法能让电脑独立自动地用一条命令行运行第1,2,3...,10个模型吗?
有的,可以使用bash for循环。首先,使用sys.argv来解析命令行参数。如果想要在命令行上重写配置文件可以使用类如hydra的工具。
import sys import joblib # df = ... model_type = sys.argv[1] model_version = sys.argv[2] model_path =f model/model1/{model_type}/version_{model_version} print( Loading modelfrom , model_path, for training ) model = joblib.load(model_path) mode.predict(df)>>> python train.py XGBoost 1Loading model from model/model1/XGBoost/version_1 for training
脚本已经被指令为使用模具第一版的XGBoost来预测命令行上的数据。现在便能在不同版本的模具中使用bash for循环。如果能用Python使用for循环,也可以在如下的终端上达成上述的目标。
$ for version in 2 3 4> do> python train.py XGBoost $version> done
敲击Enter来分隔各行,输出:
Loading model from model/model1/XGBoost/version_1 for trainingLoading model from model/model1/XGBoost/version_2 for trainingLoading model from model/model1/XGBoost/version_3 for trainingLoading model from model/model1/XGBoost/version_4 for training
现在便可以让脚本使用不同的模具来运行啦!
恭喜!现在你已经学会如何一次自动地读取和创造多个文件,如何用不同的参数运行一个文档,过去丢在琐碎工作中的时间可以利用起来做更重要的任务啦。
推荐阅读专题
留言点赞发个朋友圈
我们一起分享AI学习与发展的干货
编译组:欧舒蔓、岳馨妍
相关链接:
https://towardsdatascience.com/3-python-tricks-to-read-create-and-run-multiple-files-automatically-5221ebaad2ba
如转载,请后台留言,遵守转载规范
推荐文章阅读
长按识别二维码可添加关注
读芯君爱你