六大基本AI术语:如何做好人工智能咨询服务?

本文介绍了人工智能咨询服务中的六个基本术语,包括数据整理、数据插补、数据分区、监督学习、无监督学习和模型评估指标,帮助读者更好地理解和利用AI咨询内容。
摘要由CSDN通过智能技术生成

全文共1448字,预计学习时长4分钟

 

图源:pexels

想要使用人工智能咨询服务,就要先理解这六个人工智能术语,才能最大程度地利用好咨询内容。

 

1. 数据整理(Data Wrangling)

 

数据整理是指获取元数据,并将其转换为机器学习和人工智能可以识别的形式和架构的过程。为了获取客户所收集的数据,并用这些数据建立软件解决方案所需的任何模型,数据整理是任何人工智能顾问都会采取的前期步骤之一。

 

这个过程包含了许多步骤,包括数据输入、数据结构化、清理不良数据,以及处理数据来创建更多有效字段。这部分看起来简单,但可能是最重要的一部分,其间需要客户输入的数据来引导新顾问整理这些数据。

 

2.人工智能模型的数据插补

 

大部分数据集都存在缺值字段,这就让数据集显得稀疏零落。最快速的解决方法就是干脆从数据集中清除掉这种字段或者属性,但是通常来说这种解决方案非常低级,毕竟顾问起初能够获取的任何数据都是很宝贵的。

 

在这种情况下,大多数人工智能咨询公司会根据其余数据,通过数据加工技术赋予缺值最合理的数值。最通用的技术是均值插补法,即取该字段已知数据的均值,填充进空缺处。很多数据科学顾问都采用这种技术,这是一种在不影响当前数据架构的情况下填补空缺的好方法。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值